
AN INTRODUCTION TO TRAJECTORY OPTIMIZATION:
HOW TO DO YOUR OWN DIRECT COLLOCATION ∗

MATTHEW KELLY †

Abstract. This paper is an introductory tutorial for numerical trajectory optimization with a focus on direct collocation
methods. These methods are relatively simple to understand and effectively solve a wide variety of trajectory optimization
problems. Throughout the paper we illustrate each new set of concepts by working through a sequence of four example problems.
We start by using trapezoidal collocation to solve a simple one-dimensional toy-problem and work up to using Hermite–Simpson
collocation to compute the optimal gait for a bipedal walking robot. Along the way, we cover basic debugging strategies and
guidelines for posing well-behaved optimization problems. The paper concludes with a short overview of other methods for
trajectory optimization. We also provide an electronic supplement that contains well-documented Matlab code for all examples
and methods presented in this paper. Our primary goal is to provide the reader with the resources necessary to understand
and successfully implement their own direct collocation methods.

1. Introduction. What is trajectory optimization? Let’s start with an example: imagine a satellite
moving between two planets. We would use the term trajectory to describe the path the the satellite takes
between the two planets. Usually, this path would include both state (e.g. position and velocity) and control
(e.g. thrust) as functions of time. The term trajectory optimization refers to a set of methods that are used
to find the best choice of trajectory, typically by selecting the inputs to the system, known as controls, as
functions of time.

1.1. Overview. Why read this paper? Our contribution is to provide a tutorial that covers all of the
basics required to understand and implement direct collocation methods, while still being accessible to broad
audience. Where possible, we teach through examples, both in this paper and in the electronic supplement.

This tutorial starts with a brief introduction to the basics of trajectory optimization (§1), and then it
moves on to solve a simple example problem using trapezoidal collocation (§2). The next sections cover
the general implementation details for trapezoidal collocation (§3) and Hermite–Simpson collocation (§4),
followed by a section about practical implementation details and debugging (§5). Next there are three
example problems: cart-pole swing-up (§6), five-link bipedal walking (§7), and minimum-work block-move
(§8). The paper concludes with an overview of related optimization topics and a summary of commonly
used software packages (§9).

This paper comes with a two-part electronic supplement, which is described in detail in the appendix
§A. The first part is a general purpose trajectory optimization library, written in Matlab, that implements
both trapezoidal direct collocation, Hermite–Simpson direct collocation, direct multiple shooting (4th-order
Runge–Kutta), and global orthogonal collocation (Chebyshev Lobatto). The second part of the supplement
is a set of all example problems from this paper implemented in Matlab and solved with the afore-mentioned
trajectory optimization library. The code in the supplement is well-documented and designed to be read in
a tutorial fashion.

1.2. Notation. For reference, these are the main symbols we will use throughout the tutorial and will
be described in detail later.

tk time at knot point k

N number of trajectory (spline) segments

hk = tk+1 − tk duration of spline segment k

xk = x(tk) state at knot point k

uk = u(tk) control at knot point k

wk = w
(
tk,xk,uk

)
integrand of objective function at knot point k

fk = f
(
tk,xk,uk

)
system dynamics at knot point k

q̇ = d
dt
q q̈ = d2

dt2
q first and second time-derivatives of q

∗This work was supported by the National Science Foundation
†Cornell University, Ithaca, NY. (mpk72@cornell.edu). Questions, comments, or corrections to this document may be

directed to that email address.

1

mailto:mpk72@cornell.edu

Start
force

Finish

no friction
time = 0
position = 0
velocity = 0

time = 1
position = 1
velocity = 0

Fig. 1. Illustration of the boundary conditions for the simple block move example.

p
o
s
it

io
n

time 10
0

1

p
o
s
it

io
n

time 10
0

1

a few feasible

 trajectories

the optimal

trajectory
minimizing the integral

of force-squared

Fig. 2. Comparison of feasible (left) and optimal (right) trajectories for the simple block move example.

In some cases we will use the subscript k+ 1
2 to indicate the mid-point of spline segment k. For example,

uk gives the control at the beginning of segment k, and uk+ 1
2
gives the control at the mid-point of segment

k.

1.3. A simple example. We will start by looking at a simple example: how to move a small block
between two points, starting and finishing at rest, in a fixed amount of time. First, we will need to write down
the dynamics, which describe how the system moves. In this case, we will model the block as a point-mass
that travels in one dimension, and the control (input) to the system is simply the force applied to the block.
Here we use x for position, ν for velocity, and u for control (force).

ẋ = ν ν̇ = u system dynamics

In this case, we would like the block to move one unit of distance in one unit of time, and it should
be stationary at both start and finish. These requirements are illustrated in Figure 1 and are known as
boundary conditions.

x(0) = 0
ν(0) = 0

x(1) = 1
ν(1) = 0

boundary conditions

A solution to a trajectory optimization problem is said to be feasible if it satisfies all of the problem
requirements, known as constraints. In general, there are many types of constraints. For the simple block-
moving problem we have only two types of constraints: the system dynamics and the boundary conditions.
Figure 2 shows several feasible trajectories. The set of controls that produce feasible trajectories are known
as admissible controls.

Trajectory optimization is concerned with finding the best of the feasible trajectories, which is known
as the optimal trajectory, also shown in Figure 2. We use an objective function to mathematically describe
what we mean by the ‘best’ trajectory. Later in this tutorial we will solve this block moving problem with
two commonly used objective functions: minimal force squared (§2) and minimal absolute work (§8).

min
u(t), x(t), ν(t)

∫ 1

0

u2(τ) dτ minimum force-squared

min
u(t), x(t), ν(t)

∫ 1

0

∣
∣u(τ) ν(τ)

∣
∣ dτ minimum absolute work

1.4. The trajectory optimization problem. There are many ways to formulate trajectory opti-
mization problems [5, 45, 51]. Here we will restrict our focus to single-phase continuous-time trajectory
optimization problems: ones where the system dynamics are continuous throughout the entire trajectory. A
more general framework is described in [51] and briefly discussed in Section §9.9.

2

In general, an objective function can include two terms: a boundary objective J(·) and a path integral
along the entire trajectory, with the integrand w(·). A problem with both terms is said to be in Bolza form.
A problem with only the integral term is said to be in Lagrange form, and a problem with only a boundary
term is said to be in Mayer form. [5] The examples in this paper are all in Lagrange form.

(1.1) min
t0,tF ,x(t),u(t)

J
(
t0, tF ,x(t0),x(tF)

)

︸ ︷︷ ︸

Mayer Term

+

∫ tF

t0

w
(
τ,x(τ),u(τ)

)
dτ

︸ ︷︷ ︸

Lagrange Term

In optimization, we use the term decision variable to describe the variables that the optimization solver is
adjusting to minimize the objective function. For the simple block moving problem the decision variables
are the initial and final time (t0, tF), as well as the state and control trajectories, x(t) and u(t) respectively.

The optimization is subject to a variety of limits and constraints, detailed in the following equations
(1.2-1.9). The first, and perhaps most important of these constraints is the system dynamics, which are
typically non-linear and describe how the system changes in time.

(1.2) ẋ(t) = f
(
t,x(t),u(t)

)
system dynamics

Next is the path constraint, which enforces restrictions along the trajectory. A path constraint could be
used, for example, to keep the foot of a walking robot above the ground during a step.

(1.3) h
(
t,x(t),u(t)

)
≤ 0 path constraint

Another important type of constraint is a non-linear boundary constraint, which puts restrictions on the
initial and final state of the system. Such a constraint would be used, for example, to ensure that the gait
of a walking robot is periodic.

(1.4) g
(
t0, tF ,x(t0),x(tF)

)
≤ 0 boundary constraint

Often there are constant limits on the state or control. For example, a robot arm might have limits on the
angle, angular rate, and torque that could be applied throughout the entire trajectory.

xlow ≤ x(t) ≤ xupp path bound on state(1.5)

ulow ≤ u(t) ≤ uupp path bound on control(1.6)

Finally, it is often important to include specific limits on the initial and final time and state. These might
be used to ensure that the solution to a path planning problem reaches the goal within some desired time
window, or that it reaches some goal region in state space.

tlow ≤ t0 < tF ≤ tupp bounds on initial and final time(1.7)

x0,low ≤ x(t0) ≤ x0,upp bound on initial state(1.8)

xF,low ≤ x(tF) ≤ xF,upp bound on final state(1.9)

1.5. Direct collocation method. Most methods for solving trajectory optimization problems can be
classified as either direct or indirect. In this tutorial we will focus on direct methods, although we do provide
a brief overview of indirect methods in Section §9.4. The key feature of a direct method is that is discretizes
the trajectory optimization problem itself, typically converting the original trajectory optimization problem
into a non-linear program (see §1.6). This conversion process is known as transcription and it is why some
people refer to direct collocation methods as direct transcription methods.

In general, direct transcription methods are able to discretize a continuous trajectory optimization
problem by approximating all of the continuous functions in the problem statement as polynomial splines.
A spline is a function that is made up of a sequence of polynomials segments. Polynomials are used because
they have two important properties: they can be represented by a small (finite) set of coefficients, and it is
easy to compute integrals and derivatives of polynomials in terms of these coefficients.

Throughout this tutorial we will be studying two direct collocation methods in detail: trapezoidal collo-
cation (§3) and Hermite–Simpson collocation (§4). We will also briefly cover a few other direct collocation
techniques: direct single shooting (§9.5), direct multiple shooting (§9.6), and orthogonal collocation (§9.7).

3

1.6. Non-linear programming. Most direct collocation methods transcribe a continuous-time tra-
jectory optimization problem into a non-linear program. A non-linear program is a special name given to a
constrained parameter optimization problem that has non-linear terms in either its objective or constraint
function. A typical formulation for a non-linear program is given below.

min
z

J(z) subject to:(1.10)

f(z) = 0

g(z) ≤ 0

zlow ≤ z ≤ zupp

In this tutorial we will not spend time examining the details of how to solve a non-linear program
(see [34], [6], [11]), and instead will focus on the practical details of how to properly use a non-linear
programming solver, such as those listed in Section §9.12.

In some cases, a direct collocation method might produce either a linear or quadratic program instead
of a non-linear program. This happens when the constraints (including system dynamics) are linear and the
objective function is linear (linear program) or quadratic (quadratic program). Both linear and quadratic
programs are much easier to solve than non-linear programs, making them desirable for real-time applications,
especially in robotics.

2. Block move example (minimum-force objective). In this section we continue with the simple
example presented in the introduction: computing the optimal trajectory to move a block between two
points.

2.1. Block move example: problem statement. We will model the block as a unit point mass that
slides without friction in one dimension. The state of the block is its position x and velocity ν, and the
control is the force u applied to the block.

(2.1) ẋ = ν ν̇ = u

Next, we need to write the boundary constraints which describe the initial and final state of the block. Here
we constrain the block to move from x = 0 at time t = 0 to x = 1 at time t = 1. Both the initial and final
velocity are constrained to be zero.

(2.2)
x(0) = 0
ν(0) = 0

x(1) = 1
ν(1) = 0

A trajectory that satisfies the system dynamics and the boundary conditions is said to be feasible, and the
corresponding controls are said to be admissible. A trajectory is optimal if it minimizes an objective function.
In general, we are interested in finding solution trajectories that are both feasible and optimal. Here we
will use a common objective function: the integral of control effort squared. This cost function is desirable
because it tends to produce smooth solution trajectories that are easily computed.

(2.3) min
u(t), x(t), ν(t)

∫ 1

0

u2(τ) dτ

2.2. Block move example: analytic solution. The solution to the simple block moving trajectory
optimization problem (2.1-2.3) is given below, with a full derivation shown in Appendix B.

(2.4) u∗(t) = 6− 12t x∗(t) = 3t2 − 2t3

The analytic solution is found using principles from calculus of variations. These methods convert the original
optimization problem into a system of differential equations, which (in this special case) happen to have an
analytic solution. It is worth noting that indirect methods for solving trajectory optimization work by using
a similar principle: they analytically construct the necessary and sufficient conditions for optimality, and
then solve then numerically. Indirect methods are briefly covered in Section 9.4.

4

2.3. Block move example: trapezoidal collocation. Now let’s look at how to compute the optimal
block-moving trajectory using trapezoidal collocation. We will need to convert the original continuous-time
problem statement into a non-linear program. First, we need to discretize the trajectory, which gives us a
finite set of decision variables. This is done by representing the continuous position x(t) and velocity v(t)
by their values at specific points in time, known as collocation points.

t → t0 . . . tk . . . tN

x → x0 . . . xk . . . xN

ν → ν0 . . . νk . . . νN

Next, we need to convert the continuous system dynamics into a set of constraints that we can apply to
the state and control at the collocation points. This is where the trapezoid quadrature (also known as the
trapezoid rule) is used. The key idea is that the change in state between two collocation points is equal to
the integral of the system dynamics. That integral is then approximated using trapezoidal quadrature, as
shown below, where hk ≡ (tk+1 − tk).

ẋ = ν
∫ tk+1

tk

ẋ dt =

∫ tk+1

tk

ν dt

xk+1 − xk ≈ 1
2 (hk)(νk+1 + νk)

Simplifying and then applying this to the velocity equation as well, we arrive at a set of equations that allow
us to approximate the dynamics between each pair of collocation points. These constraints are known as
collocation constraints. These equations are enforced on every segment: k = 0 . . . (N − 1) of the trajectory.

xk+1 − xk = 1
2 (hk)

(
νk+1 + νk

)
(2.5)

νk+1 − νk = 1
2 (hk)

(
uk+1 + uk

)
(2.6)

The boundary conditions are straight-forward to handle: we simply apply them to the state at the initial
and final collocation points.

(2.7)
x0 = 0
ν0 = 0

xN = 1
νN = 0

Finally, we approximate the objective function using trapezoid quadrature, converting it into a summation
over the control effort at each collocation point:

(2.8) min
u(t)

∫ tN

t0

u2(τ) dτ ≈ min
u0..uN

N−1∑

k=0

1
2 (hk)

(
u2
k + u2

k+1

)

2.4. Initialization. Most non-linear programming solvers require an initial guess. For easy problems,
such as this one, a huge range of initial guesses will yield correct results from the non-linear programming
solver. However, on difficult problems a poor initial guess can cause the solver to get “stuck” on a bad
solution or fail to converge entirely. Section §5.1 provides a detailed overview of methods for constructing
an initial guess.

For the block-moving example, we will simply assume that the position of the block (x) transitions
linearly between the initial and final position. We then differentiate this initial position trajectory to compute
the velocity (ν) and force (u) trajectories. Note that this choice of initial trajectory satisfies the system
dynamics and position boundary condition, but it violates the velocity boundary condition.

xinit(t) = t(2.9)

νinit(t) = d
dt
xinit(t) = 1(2.10)

uinit(t) = d
dt
νinit(t) = 0(2.11)

Once we have an initial trajectory, we can evaluate it at each collocation point to obtain values to pass
to the non-linear programming solver.

(2.12) xinit
k = tk, νinitk = 1, uinit

k = 0

5

2.5. Block move example: non-linear program. We have used trapezoidal direct collocation to
transcribe the continuous-time trajectory optimization problem into a non-linear program (constrained pa-
rameter optimization problem) (2.5)-(2.8). Now, we just need to solve it! Section §9.12 provides a brief
overview of software packages that solve this type of optimization problem.

In general, after performing direct transcription, a trajectory optimization problem is converted into a
non-linear programming problem. It turns out that, for this simple example, we actually get a quadratic
program. This is because the constraints (2.5)-(2.7) are both linear, and the objective function (2.8) is
quadratic. Solving a quadratic program is usually much easier than solving a non-linear program.

2.6. Block move example: interpolation. Let’s assume that you’ve solved the non-linear program:
you have a set of positions xk, velocities, νk, and controls uk that satisfy the dynamics and boundary
constraints and that minimize the objective function. All that remains is to construct a spline (piece-wise
polynomial function) that interpolates the solution trajectory between the collocation points. For trapezoidal
collocation, it turns out that you use a linear spline for the control and a quadratic spline for the state. Section
§3.4 provides a more detailed discussion and derivation of these interpolation splines.

3. Trapezoidal collocation method. Now that we’ve seen how to apply trapezoidal collocation to
a simple example, we’ll take a deeper look at using trapezoidal collocation to solve a generic trajectory
optimization problem.

Trapezoidal collocation works by converting a continuous-time trajectory optimization problem into a
non-linear program. This is done by using trapezoidal quadrature, also know as the trapezoid rule for
integration, to convert each continuous aspect of the problem into a discrete approximation. In this section
we will go through how this transformation is done for each aspect of a trajectory optimization problem.

3.1. Trapezoidal collocation: integrals. There are often integral expressions in trajectory optimiza-
tion. Usually they are found in the objective function, but occasionally they are in the constraints as well.
Our goal here is to approximate the continuous integral

∫
w(·) dt as a summation

∑
ckwk. The key concept

here is that the summation only requires the value of the integrand w(tk) = wk at the collocation points
tk along the trajectory. This approximation is done by applying the trapezoid rule for integration between
each collocation point, which yields the equation below, where hk = tk+1 − tk. [6]

(3.1)

∫ tF

t0

w
(
τ,x(τ),u(τ)

)
dτ ≈

N−1∑

k=0

1
2hk ·

(
wk + wk+1

)

3.2. Trapezoidal collocation: system dynamics. One of the key features of a direct collocation
method is that it represents the system dynamics as a set of constraints, known as collocation constraints.
For trapezoidal collocation, the collocation constraints are constructed by writing the dynamics in integral
form and then approximating that integral using trapezoidal quadrature [6].

ẋ = f
∫ tk+1

tk

ẋ dt =

∫ tk+1

tk

f dt

xk+1 − xk ≈ 1
2 hk · (fk+1 + fk)

This approximation is then applied between every pair of collocation points:

(3.2) xk+1 − xk = 1
2 hk ·

(
fk+1 + fk

)
k ∈ 0 . . . (N − 1)

Note that xk is a decision variable in the non-linear program, while fk = f(tk,xk,uk) is the result of
evaluating the system dynamics at each collocation point.

3.3. Trapezoidal collocation: constraints. In addition to the collocation constraints, which enforce
the system dynamics, you might also have limits on the state and control, path constraints, and boundary
constraints. These constraints are all handled by enforcing them at specific collocation points. For example,
simple limits on state and control are approximated:

(3.3) x < 0 → xk < 0 ∀k

6

knot point

match function

value at knot points

linear spline

approximation

"true" functionsegment

Fig. 3. Function approximation using a linear spline.

(3.4) u < 0 → uk < 0 ∀k

Path constraints are handled similarly:

(3.5) g(t,x,u) < 0 → g(tk,xk,uk) < 0 ∀k

Boundary constraints are enforced at the first and last collocation points:

(3.6) h
(
t0,x(t0),u(t0)

)
< 0 → h

(
t0,x0,u0

)
< 0

Finally, there are two notes of caution with regard to constraints. First, trajectory optimization problems
with path constraints tend to be much harder to solve than those without. The details are beyond the scope
of this paper, but are well covered by Betts [6]. Second, in trapezoidal collocation the boundaries of the
trajectory are always collocation points. There are some methods, such as those presented in Section §9.7,
for which the trajectory boundaries are not collocation points. For these methods, special care must be
taken when handling boundary constraints [3, 23].

3.4. Trapezoidal collocation: interpolation. Trapezoidal collocation works by approximating the
control trajectory and the system dynamics as piece-wise linear functions, also known as a linear splines,
shown in Figure 3. When constructing a spline, the term knot point is used to denote any point that joins
two polynomial segments. For trapezoidal collocation, the knot points of the spline are coincident with the
collocation points.

Let’s start by constructing the control trajectory, which is a simple linear spline. We know both the
time and control at each knot point, so it is a simple matter to derive the expression for u on the interval
t ∈ [tk, tk+1]. To keep the math readable, let’s define τ = t− tk and hk = tk+1 − tk.

(3.7) u(t) ≈ uk +
τ

hk

(uk+1 − uk)

The state trajectory is represented by a quadratic spline — a piece-wise quadratic function. This might
seem confusing, but it follows directly from the collocation equations (3.2). The trapezoidal collocation
equations are exact when the system dynamics vary linearly between any two knot points, a fact that we
use to approximate the dynamics over a single segment t ∈ [tk, tk+1] as shown below.

(3.8) f(t) = ẋ(t) ≈ fk +
τ

hk

(fk+1 − fk)

We are interested in x and not ẋ, so we integrate both sides of the equation to get a quadratic expression
for the state.

(3.9) x(t) =

∫

ẋ(t) dτ ≈ c+ fkτ +
τ2

2hk

(fk+1 − fk)

7

control:

linear spline

state:

quadratic spline

Fig. 4. Illustration of the linear and quadratic spline segments that are used to approximate the control and state trajec-
tories for trapezoidal collocation.

match function at

knot points and

mid-points
quadratic spline

approximation

"true" function

segmentknot point

mid-point

Fig. 5. Function approximation using a quadratic spline. Notice that this approximation is far more accurate than the
linear spline in Figure 3, for the same number of segments.

We can solve for the constant of integration c by using the value of the state at the boundary τ = 0 to get
our final expression for the state.

(3.10) x(t) ≈ xk + fkτ +
τ2

2hk

(fk+1 − fk)

Figure 4 shows how a linear control segment and quadratic state segment are constructed. The spline equa-
tions (3.7) and (3.10) are specifically for trapezoidal collocation, since there is a one-to-one correspondence
between the collocation equations and the interpolating spline. In general, if the control is a spline of order
n, then the state is represented by a spline of order n+ 1 [6].

4. Hermite–Simpson collocation method. The Hermite–Simpson collocation is similar to trape-
zoidal collocation, but it provides a solution that is higher-order accurate. This is because trapezoidal
collocation approximates the objective function and system dynamics as piece-wise linear functions, while
Hermite–Simpson collocation approximates them as piece-wise quadratic functions, as shown in Figure 5.
An additional benefit of the Hermite–Simpson collocation method is that the state trajectory is a cubic
Hermite spline, which has a continuous first derivative.

4.1. Hermite–Simpson collocation: integrals. Integral expressions are common in trajectory op-
timization problems, especially in the objective function. The Hermite–Simpson collocation method approx-
imates these integrals using Simpson quadrature. Simpson quadrature, also known as Simpson’s rule for
integration, works by approximating the integrand of the integral as a piece-wise quadratic function. This
approximation is given below and derived in Appendix §C.

∫ tF

t0

w
(
τ
)
dτ ≈

N−1∑

k=0

hk

6

(
wk + 4wk+ 1

2
+ wk+1

)

4.2. Hermite–Simpson collocation: system dynamics. In any collocation method the collocation
constraints are the set of constraints that are constructed to approximate the system dynamics. In the
Hermite–Simpson collocation method we construct these constraints by rewriting the system dynamics in
integral form: the change in state between any two knot points tk should be equal to the integral of the

8

system dynamics f(·) between those points.

ẋ = f(4.1)
∫ tk+1

tk

ẋ dt =

∫ tk+1

tk

f dt(4.2)

The transcription from continuous dynamics to a set of collocation equations occurs when we approximate
the continuous integral in (4.2) with Simpson quadrature and apply it between every pair of knot points.

(4.3) xk+1 − xk = 1
6 hk(fk + 4fk+ 1

2
+ fk+1)

For Hermite–Simpson collocation we actually need a second collocation equation, in addition to (4.3), to
enforce the dynamics. This is because the dynamics at the mid-point of the segment fk+ 1

2
are a function of

the state xk+ 1
2
, which is not known a priori. We can compute the state at the mid-point by constructing an

interpolant for the state trajectory (see Section §4.4) and then evaluating it at the mid-point of the interval.

(4.4) xk+ 1
2
=

1

2

(
xk + xk+1

)
+

hk

8

(
fk − fk+1

)

This second collocation equation (4.4) is special in that it can be computed explicitly in terms of the state
at the knot points. Thus, it is possible to combine both equations (4.4) and (4.3) into a single complicated
collocation constraint. When transcription of the system dynamics is performed using this single collocation
constraint, the resulting formulation is said to be in compressed form. An alternative implementation is to
create an additional decision variable for the state at the mid-point xk+ 1

2
, and then use both (4.3) and (4.4)

as constraint equations. When the collocation equations are formulated using this pair of constraints they
are said to be in separated form.

There are a variety of trade-offs between the separated and compressed forms of Hermite–Simpson
collocation, which are covered in detail in [6]. The general rule is that the separated form is better when
working with a smaller number of segments, while the compressed form is better when the number of segments
is large. Both constraint equations (4.3) and (4.4) can be found in Betts book [6].

4.3. Hermite–Simpson collocation: constraints. In addition to the collocation constraints, which
enforce the system dynamics, you might also have limits on the state and control, path constraints, and
boundary constraints. These constraints are all handled by enforcing them at specific collocation points. For
example, simple limits on state and control are approximated:

(4.5) x < 0 →
xk < 0

xk+ 1
2

< 0

(4.6) u < 0 →
uk < 0

uk+ 1
2

< 0

Path constraints are handled similarly: they are applied at all collocation points, as shown below.

(4.7) g(t,x,u) < 0 →
g(tk,xk,uk) < 0

g(tk+ 1
2
,xk+ 1

2
,uk+ 1

2
) < 0

Boundary constraints are enforced at the first and last knot points:

(4.8) h
(
t0,x(t0),u(t0)

)
< 0 → h

(
t0,x0,u0

)
< 0

Just like in trapezoidal collocation, trajectory optimization problems with path constraints tend to be much
harder to solve than those without [6]. Additionally, in Hermite–Simpson collocation the boundaries of the
trajectory are always collocation points. There are some methods, such as those presented in Section §9.7,
for which the trajectory boundaries are not collocation points. For these methods, special care must be
taken when handling boundary constraints. [3, 23]

9

control:

quadratic spline

state:

cubic spline

Fig. 6. Illustration of the quadratic and cubic spline segments that are used to approximate the control and state trajectories
for Hermite–Simpson collocation.

4.4. Hermite–Simpson collocation: interpolation. After we’ve solved the non-linear program, we
know the value of the state and control trajectories at each collocation point. The next step is to construct
a continuous trajectory to interpolate the solution between the collocation points. Just like with trapezoidal
collocation, we will use a polynomial interpolant that is derived from the collocation equations.

Hermite–Simpson collocation works by using Simpson quadrature to approximate each segment of the
trajectory. As shown in Appendix §C, Simpson quadrature uses a quadratic segment, fitted through three
uniformly spaced points, to approximate the integrand. In this case, we are approximating both the control
and the system dynamics as quadratic over each segment of the trajectory.

The general equation for quadratic interpolation is given in Numerical Recipes in C [49], and reproduced
below for a curve u(t) that passes through three points: (tA,uA) , (tB,uB) , and (tC ,uC).

(4.9) u(t) =
(t− tB)(t− tC)

(tA − tB)(tA − tC)
uA +

(t− tA)(t− tC)

(tB − tA)(tB − tC)
uB +

(t− tA)(t− tB)

(tC − tA)(tC − tB)
uC

For our specific case, we can simplify this equation quite a bit, since our points are uniformly spaced. Let’s
start by using points k, k + 1

2 , and k + 1 in place of A, B, and C. Next, recall from previous sections that
hk = tk+1 − tk, tk+ 1

2
= 1

2 (tk + tk+1), and τ = t − tk. After making these substitutions, and doing some
algebra, we can arrive at the following simplified equation for interpolating the control trajectory.

(4.10) u(t) =
2

h2
k

(
τ − hk

2

)(
τ − hk

)
uk −

4

h2
k

(
τ
)(
τ − hk

)
uk+ 1

2
+

2

h2
k

(
τ
)(
τ − hk

2

)
uk+1

Hermite–Simpson collocation also represents the system dynamics f(·) = ẋ using quadratic polynomials over
each segment. As a result, the quadratic interpolation formula that we developed for the control trajectory
can also be applied to the system dynamics.

(4.11) f(t) = ẋ =
2

h2
k

(
τ − hk

2

)(
τ − hk

)
fk −

4

h2
k

(
τ
)(
τ − hk

)
fk+ 1

2
+

2

h2
k

(
τ
)(
τ − hk

2

)
fk+1

Usually we are interested in obtaining an expression for the state trajectory x(t) rather than its derivative
ẋ(t). To get the state trajectory, we simply integrate (4.11), after rearranging it to be in standard polynomial
form.

(4.12) x(t) =

∫

ẋ dt =

∫
[

fk +

(

− 3fk + 4fk+ 1
2
− fk+1

)(
τ

hk

)

+

(

2fk − 4fk+ 1
2
+ 2fk+1

)(
τ

hk

)2
]

dt

We can compute the integral using basic calculus, and then solve for the constant of integration using the
boundary condition x(tk) = xk. The resulting expression is given below, which allows us to interpolate the
state trajectory.

(4.13) x(t) = xk + fk

(
τ

hk

)

+
1

2

(

− 3fk + 4fk+ 1
2
− fk+1

)(
τ

hk

)2

+
1

3

(

2fk − 4fk+ 1
2
+ 2fk+1

)(
τ

hk

)3

The interpolants for the state and control trajectories are illustrated in Figure 6.

5. Practical considerations. This section of the paper provides an overview of several important
topics that are related to trajectory optimization in general, rather than to some specific method. We start
with some practical suggestions about how to initialize trajectory optimization problems, followed by two
sections that explain how to check the accuracy of a given solution. We conclude by looking at some common
bugs that show up in trajectory optimization code and how to go about fixing them.

10

5.1. Initialization. Nearly all trajectory optimization techniques require a good initial guess to begin
the optimization. In the best case, a good initialization will ensure that the solver rapidly arrives at the
globally optimal solution. In the worst case, a bad initialization can cause the non-linear programming solver
to fail to solve an otherwise correct optimization problem.

To understand these concepts, let’s use an analogy: imagine that the optimization is trying to get to the
top of a hill. If the landscape is simple, with only one hill, then it doesn’t matter where the optimization
starts: it can go uphill until it finds the solution. What happens if there are two different hills and one is
higher? Then there will be some starting points where going uphill will only get you to the shorter of the
two hills. In this case, the optimization will know that it got to the top of the hill, but it won’t know that
there is an even higher hill somewhere else.

Just like in the simple hill-climbing analogy, the choice of initial guess can affect which local minimum
the optimization eventually converges to. The presence of constraints makes it even worse: there might be
some starting points from which the optimization cannot even find a feasible solution. This is a fundamental
problem with non-linear programming solvers: they cannot always find a solution, and if they do find a
solution, it is only guaranteed to be locally optimal.

The best initializations for trajectory optimization usually require some problem-specific knowledge, but
there are a few general approaches that can be useful. In this way, initialization is more of an art than a
science. One good practice is to try several different initialization strategies and check that they all converge
to the same solution. See §5.4 for some debugging suggestions to help determine if a solution is converging
correctly.

One of the simplest initialization techniques is to assume that the trajectory is a straight line in state
space between the initial and final states. This approach is easy to implement, and will often work well,
especially for simple boundary value problems.

If you have a rough idea of what the behavior should look like, then you can put that in as the initial
guess. For example, if you want a robot to do a back-flip, sketch out the robot at a few points throughout
the back-flip, figure out the points in state-space for each configuration, and then use linear interpolation
between those points.

For complicated problems, a more principled approach might be required. Our favorite technique is to
simplify the trajectory optimization problem until we can get a reasonable solution using a simple initial-
ization technique. Then we use the solution of the simplified problem to initialize the original problem. If
this doesn’t work, then we simply construct a series of trajectory optimization problems, each of which is
slightly closer to the desired problem and which uses the previous solution as the initial guess.

For example, let’s say that you want to find a minimum-work trajectory for a walking robot. This
objective function is challenging optimize (see §8), and there are some difficult non-linear constraints: foot
clearance, contact forces, and walking speed. Start by replacing the objective function with something
simple: a minimum torque-squared objective (like the five-link biped example, §7). Next, remove most
of the constraints and replace the non-linear dynamics with simple kinematics (joint acceleration = joint
torque). Solve this problem, and then use the solution to initialize a slightly harder version of the problem
where you’ve added back in some of the constraints. You can then repeat this process until you have a
solution to your original trajectory optimization problem. This process is also a good way to find bugs in
both your problem statement and code.

5.2. Mesh refinement. The direct transcription process approximates a trajectory using polynomial
splines, which allows the trajectory optimization problem to be converted into a non-linear program. The
collocation constraints in the resulting non-linear program are acting as implicit Runge–Kutta integration
schemes [6]. Just like any integration scheme, there are numerical errors associated with the choice of time
step and method order. Using short time steps (dense mesh) and a high-order method will result in an
accurate approximation, but at a significant computational cost.

Mesh refinement is the process by which a trajectory optimization problem is solved on a sequence
of different collocation meshes, also known as collocation grids. The mesh (grid) refers to the choice of
discretization along the trajectory. Generally, the first mesh is coarse, with a small number of collocation
points and (or) a lower-order collocation method. Subsequent meshes have more points and (or) higher-order
collocation methods. This iterative strategy is implemented to obtain the most accurate solution with the
least amount of computational effort: the solutions using the initial meshes are easy to solve but inaccurate,

11

keep

mesh

keep

mesh

1

3

1

4
1

4

1

2

1

2

1

2

Fig. 7. Illustration of mesh refinement by sub-dividing segments. The number of sub-segments is determined by the peak
error in each segment.

while the solutions on subsequent meshes are more costly to compute but more accurate.
Figure 7 shows a simple example of how the mesh for a linear spline might be refined to produce a

more accurate representation by adding a small number of points. The segments with a small error are
left unchanged, while segments with more error are sub-divided into 2, 3, or 4 sub-segments for the next
iteration.

In more sophisticated mesh-refinement methods, the accuracy of a given segment might be improved
by sub-dividing it or by increasing the polynomial order inside the segment. Such algorithms are referred
to as hp-adaptive meshing. The decision to sub-divide the mesh or to increase the polynomial order is
made by examining the error profile within a single segment. If there is a spike in the error, then the
segment is sub-divided, otherwise the polynomial order is increased, for example switching from trapezoidal
to Hermite–Simpson collocation [16], [45], and [6].

5.3. Error analysis. There are two types of numerical errors that are present in the solution of a
trajectory optimization problem: transcription errors and errors in the solution to the non-linear program.
Here we will focus on the accuracy of the transcription process, quantifying how much error was introduced
by the choice of discretization (both method and grid). We can then use these error estimates to compute
a new discretization, as described in §5.2.

There are many possible error metrics for trajectory optimization [6]. Here we will construct an error
estimate based on how well the candidate trajectory satisfies the system dynamics between the collocation
points. The logic here is that if the system dynamics are accurately satisfied between the collocation points,
then the polynomial spline is an accurate representation of the system, which would then imply that the
non-linear program is an accurate representation of the original trajectory optimization problem.

We do not know the true solution x∗(t), u∗(t) of the trajectory optimization problem, but we do know
that it must precisely satisfy the system dynamics:

ẋ∗(t) = f
(
t,x∗(t),u∗(t)

)

From this, we can construct an expression for the error in the solution to the system dynamics along the
candidate trajectory. It is important that the solution x(t) and u(t) is evaluated using method consistent
interpolation [6].

ε(t) = ẋ(t)− f
(
t,x(t),u(t)

)

This error ε(t) will be zero at each collocation point and non-zero elsewhere. We can compute the integral of
the error ε(t) numerically to determine how far the candidate solution (polynomial spline) may have deviated
from the true solution along each dimension of the state. The following expression for the error is typically
evaluated using Rhomberg quadrature [6].

ηk =

∫ tk+1

tk

|ε(τ)| dτ

12

Once you have the error in each state over each segment of the trajectory, you can use this to determine
how to re-mesh the trajectory (§5.2) so that your optimization converges to an optimal solution that satisfies
the continuous dynamics. See [6] and [16] for additional details about how to compute error estimates and
perform mesh refinement.

5.4. Debugging your code. There are many ways that trajectory optimization can go wrong. In this
section, we discuss some common bugs that find their way into code and a few techniques for locating and
fixing them. Betts [6] also provides a good list of debugging suggestions.

One particularly tricky type of bug occurs when there is a family of optimal solutions, rather than a single
unique solution. This causes a failure to converge because the optimization is searching for a locally optimal
solution, which it never finds because many solutions are equally good. The fix is to modify the problem
statement so that there is a unique solution. One simple way to do this is to add a small regularization
term to the cost function, such as the integral of control squared along the trajectory. This puts a shallow
bowl in the objective function, forcing a unique solution. Trajectory optimization problems with non-unique
solutions often have singular arcs, which occur when the optimal control is not uniquely defined by the
objective function. A more formal treatment of singular arcs is provided in [5] and [6].

A trajectory optimization problem with a non-smooth solution (control) might cause the non-linear
program to converge very slowly. This occurs in our final example: finding the minimal work trajectory to
move a block between two points (§8). There three basic ways to deal with a discontinuous solution (control).
The first is to do mesh refinement (§5.2) so that there are many short segments near the discontinuity. The
second is to slightly modify the problem, typically by introducing a smoothing term, such that the solution
is numerically stiff but not discontinuous. This second approach was used in [55]. The third approach is to
solve the problem using a multi-phase method (see §9.9), such that the control in each phase of the trajectory
is continuous, and discontinuities occur between phases.

Another common cause of poor convergence in the non-linear programming solver occurs when then ob-
jective and constraint functions are not consistent (see §5.5). There are many sources of inconsistency that
find their way into trajectory optimization problems: discontinuous functions (abs(), min(), max()...),
random number generators, variable step (adaptive) integration, iterative root finding, and table interpo-
lation. All of these will cause significant convergence problems if placed inside of a standard non-linear
programming solver. Section §5.5 covers some methods for handling inconsistent functions.

If the non-linear programming solver returns saying that the problem is infeasible, there are two possible
scenarios. The first is that your problem statement is actually impossible: you have contradictory constraints.
In this cases, you can often figure out some clues by looking at final point in the non-linear programming
solution (the best of the infeasible trajectories). What constraints are active? Is the trajectory right on
top of your initial guess? Is it running into an actuator limit? You can also debug this type of failure by
removing constraints from the problem until it converges and then adding constraints back one at a time.

The second cause of an infeasible report from a non-linear programming solver is when a complicated
optimization problem is initialized with a poor guess. In this cases, the optimization gets stuck in a ‘bad’
local minima, that has no feasible solution. The best fix in this case it to use the methods discussed in §5.1
to compute a better initialization.

It is challenging to determine if a candidate solution is at a global or a local minimum. In both cases the
non-linear programming solver will report success. In general, there is no rigorous way to determine if you
have the globally optimal solution, but there are many effective heuristics. One such heuristic is to run the
optimization from a wide variety of initial guesses. If most of the guesses converge to the same solution, and
it is better than all others found, there is a good chance that this is the globally optimal solution. Another
such heuristic is to use different transcription methods and check that all methods all converge to the same
solution.

5.5. Consistent functions. Direct transcription solves a trajectory optimization problem by convert-
ing it to a non-linear program. Most non-linear programming solvers, such as SNOPT [50], IPOPT [10], and
FMINCON [36], require that the user-defined objective and constraint functions be consistent. A function is
consistent if it performs the exact same sequence of arithmetic operations on each call [6]. This is essentially
like saying that the function must have no logical branches, be deterministic, and have outputs that vary
smoothly with the inputs.

For example, the abs() function is not consistent, because of the discontinuity in the derivative at the

13

origin. The functions min() and max() are also not consistent. Imaging a function with two widely spaced
peaks. A small change in the shape of the function could cause the maximum value to jump from one peak
f(x1) to a second peak f(x2). The problem here is in the gradients: when the peak moves, the gradient ∂f

∂x1

jumps to zero, and the gradient ∂f
∂x2

jumps from zero to some non-trivial value.

There is a neat trick that allows many inconsistent functions (such as abs(), min(), and max()) to be
implemented consistently by introducing extra decision variables (known as slack variables) and constraints
to your problem. An example is given in Section §8, showing how to correctly implement the abs() function.
This topic is also covered by Betts [6]. An alternative way to handle such functions is to use smoothing,
which is also demonstrated in the block-moving example in §8.

Another place where inconsistency shows up is when a function has an internal iteration loop, such as in
root finding or in a variable-step integration method. The correct way to implement a root-finding method
inside of an optimization is to use a fixed number of iterations. Likewise, and a variable-step integration
method should be replaced with a fixed-step method [6].

There are many situations where evaluating the dynamics or constraint functions require a table look-up,
for example computing the lift force generated by an airfoil. Linear interpolation of a table has a discontinuous
derivative when switching between two different table entries. The fix is to switch to an interpolation
scheme that has continuous derivatives. Continuous first derivatives are required by most solvers when
computing gradients (first partial derivatives). Solvers that compute both gradients and Hessians (second
partial derivatives) will require continuous second derivatives [6].

One final source of inconsistency is the use of a time-stepping simulators such as Bullet [14] or Box2d [12]
to compute the system dynamics. The contact solvers in these simulators are inconsistent, which then leads
to poor convergence in the non-linear program. The best way to address this source of inconsistency is
to rewrite the system dynamics. If the sequence of contacts is known and the dynamics can be described
as a simple hybrid system, then you can use multi-phase trajectory optimization to compute the solution
(see §9.9). For more complex systems where the contact sequence is unknown, you can use through-contact
trajectory optimization to compute the solution [39, 47] (see §9.10). If you need to use the time-stepping
simulator, then you can use some of the methods developed by the computer graphics community [1,33,60,61].

6. Cart-pole swing-up example. The cart-pole system is commonly used as a teaching tool in both
introductory controls and in trajectory optimization. The system comprises a cart that travels along a
horizontal track and a pendulum that hangs freely from the cart. There is a motor that drives the cart
forward and backward along the track. It is possible to move the cart in such a way that the pendulum,
initially hanging below the cart at rest, is swung up to a point of inverted balance above the cart. In this
section, we will use direct collocation to compute the minimum-force trajectory to perform this so-called
‘swing-up’ maneuver.

6.1. Cart-pole example: system dynamics. The cart-pole is a second-order dynamical system and
its equations of motion can be derived using methods found in any undergraduate dynamics text book. The
dynamics of this system are simple enough to derive by hand, although for more complicated systems it is
generally a good idea to use a computer algebra package instead.

The position of the cart is given by q1, the angle of the pole is given by q2, and the control force is given
by u. The mass of the cart and pole are given by m1 and m2 respectively, and the length of the pole and
acceleration due to gravity are ℓ and g, as shown in Figure 8. The dynamics (q̈1 and q̈2) for the cart-pole
system are shown below.

(6.1) q̈1 =
ℓm2 sin(q2) q̇

2
2 + u+m2 g cos(q2) sin(q2)

m1 +m2

(
1− cos2(q2)

)

(6.2) q̈2 = −
ℓm2 cos(q2) sin(q2) q̇

2
2 + u cos(q2) + (m1 +m2) g sin(q2)

ℓm1 + ℓm2

(
1− cos2(q2)

)

All standard trajectory optimization methods require that the dynamics of the system be in first-order
form. This is accomplished by including both the minimal coordinates (q1 and q2) and their derivatives in

14

control

(force)

cart

position

pole angle

Fig. 8. Physical model for the cart-pole example problem. The pendulum is free to rotate about its support point on the cart.

the state. Note that q̈1 and q̈2 are defined in (6.1) and (6.2).

x =

q1
q2
q̇1
q̇2

ẋ = f
(
x, u

)
=

q̇1
q̇2
q̈1
q̈2

6.2. Cart-pole example: objective function. For this example we will use one of the more common
objective functions in trajectory optimization: the integral of the actuator-effort (control) squared.

(6.3) J =

∫ T

0

u2(τ) dτ

This objective function (6.3) tends to produce smooth trajectories, which are desirable for two key reasons.
The first is that most transcription methods assume that the solution to the trajectory optimization problem
is well-approximated by a polynomial spline. Thus a problem with a solution that is smooth will be solved
more quickly and accurately than a problem with a non-smooth solution. The second benefit of smooth
trajectories is that they tend to be easier to stabilize with conventional controllers when implemented on a
real system.

6.3. Cart-pole example: boundary constraints. Many trajectory optimization problems include
boundary constraints, which restrict the state of the system at the boundaries of the trajectory. Here we
will restrict the full state of the cart-pole system at both the initial and final points on the trajectory. Let’s
suppose that we want the cart to start in the center of the rails and translate a distance d during its swing-up
maneuver. The (constant) boundary constraints for this situation are given below.

q1(t0) = 0 q1(tF) = d

q2(t0) = 0 q2(tF) = π

q̇1(t0) = 0 q̇1(tF) = 0

q̇2(t0) = 0 q̇2(tF) = 0

6.4. Cart-pole example: state and control bounds. The cart-pole swing-up problem has a few
simple constraints. First, let’s look at the state. The cart rides on a track which has a finite length, so we
need to include a simple constraint the limits the horizontal range of the cart. Additionally, we will restrict
the motor force to some maximal force in each direction.

−dmax ≤ q1(t) ≤ dmax

−umax ≤ u(t) ≤ umax

6.5. Cart-pole example: trapezoidal collocation. We can collect all of the equations in this section
and combine them with the trapezoidal collocation method from §3, to write down the cart-pole swing-up

15

problem as a non-linear program.

minimize:

J =
N−1∑

k=0

hk

2

(
u2
k + u2

k+1

)
objective function(6.4)

decision variables:

x0...xN u0 . . . uN(6.5)

subject to:
1
2hk

(
fk+1 + fk

)
= xk+1 − xk k ∈ 0 . . . (N − 1) collocation constraints(6.6)

− dmax ≤ q1 ≤ dmax path constraints(6.7)

− umax ≤ u ≤ umax path constraints(6.8)

x0 = 0 xN = [d, π, 0, 0]T boundary constraints(6.9)

Note that hk = tk+1 − tk. Here, we will use a uniform grid, so tk = k T
N
, where N is the number of segments

used in the transcription. In general, you could solve this problem on an arbitrary grid; in other words, each
hk could be different.

6.6. Cart-pole example: Hermite–Simpson collocation. We can also use Hermite-Simpson col-
location (§4) to construct a non-linear program for the cart-pole swing-up problem. This is similar to the
trapezoidal collocation, but it uses a quadratic (rather than linear) spline to approximate the dynamics and
control. Here we will use the separated form of the Hermite–Simpson method, which requires including
collocation points for the state and control at the mid-point of each segment tk+ 1

2
(see §4.2).

minimize:

J =
N−1∑

k=0

hk

6

(
u2
k + 4u2

k+ 1
2

+ u2
k+1

)
objective function(6.10)

decision variables:

x0, x0+ 1
2
. . . xN u0, u0+ 1

2
. . . uN

subject to:

xk+ 1
2
= 1

2

(
xk + xk+1

)
+ hk

8

(
fk − fk+1

)
k ∈ 0 . . . (N − 1) interpolation constraints(6.11)

hk

6

(
fk + 4fk+ 1

2
+ fk+1

)
= xk+1 − xk k ∈ 0 . . . (N − 1) collocation constraints(6.12)

− dmax ≤ q1 ≤ dmax path constraints(6.13)

− umax ≤ u ≤ umax path constraints(6.14)

x0 = 0 xN = [d, π, 0, 0]T boundary constraints(6.15)

6.7. Cart-pole example: initialization. The cart-pole swing-up problem is a boundary value prob-
lem: we are given the initial and final state, and our task is to compute an optimal trajectory between those
two points. An obvious (and simple) initial guess is that the system linearly moves between the initial and
final state with zero control effort. This simple guess works well for this problem, despite its failure satisfy
the system dynamics.

(6.16) xguess(t) =
t

T

d
π
0
0

uguess(t) = 0

Additionally, we will start with a uniform grid, such that tk = k T
N
. The initial guess for each decision

variable in the non-linear program is then computed by evaluating (6.16) at each knot point tk (and the
mid-point tk+ 1

2
for Hermite-Simpson collocation).

16

start

end

Fig. 9. Illustration of the optimal trajectory for the cart-pole swing-up example. The frames are uniformly spaced in time,
moving from blue (dark) to yellow (light) as the trajectory progresses.

6.8. Cart-pole example: results. Here we show the optimal swing-up trajectory for the cart-pole
system, computed using Hermite-Simpson collocation with 25 trajectory segments. The set of parameters
that we use are given in Appendix §E.1. We computed the solution in Matlab, on a regular desktop
computer1, using the code provided in the electronic supplement (§A). The non-linear program was solved
by FMINCON in 5.91 seconds (71 iterations) using default convergence settings.

Figure 9 shows a stop-action animation of the swing-up maneuver, with uniformly spaced frames. The
same solution is shown in Figure 10 as plots of state and control versus time. Finally, Figure 11 shows the
error estimates along the trajectory.

Notice that the error metrics in both the differential equations and the state increase noticeably near the
middle of the trajectory. At this point, the system is changing rapidly as the pole swings-up, and the uniform
grid has difficulty approximating the system dynamics. A more sophisticated method would compute a new
grid, such that the trajectory segments were shorter near this point where the system is rapidly changing.

We selected parameters for this problem such that it is well behaved: we can make small changes to
the initial guess or the direct transcription method and get the same basic answer out. If we can change
some of the problem parameters it can make things more difficult. For example, if we increase the duration
T will causes the optimal solution to include several swings back-and-forth before the final swing-up. As
a result, the optimization problem has many local minima, one for each (incorrect) number of swings back
and forth. Another way to make the optimization more challenging is to reduce the actuator limits umax.
If these limits are made small enough, then the optimal solution will no longer be smooth. To solve it, we
would need to re-mesh the discretization (time) grid to place additional points near the discontinuities in
the force trajectory. An alternative way to address the discontinuity in the control would be to rewrite the
problem as a multi-phase problem, but this is beyond the scope of this paper.

1processor: 3.4GHz quad-core Intel i5-3570K

17

fo
rc

e
 (

N
)

a
n
g
le

 (
ra

d
)

p
o
s
it

io
n
 (

m
)

time (s)

time (s)

time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-2

0

2

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-20

-10

0

10

knot-point

quadratic spline (control)

cubic spline (state)

cubic spline (state)

Fig. 10. Plots showing the optimal trajectory for the cart-pole swing-up example.

p
o
s
it

io
n
 d

y
n
a
m

ic
s
 e

rr
o
r

(m
/s

)

time (s)

zero at knot points

0 0.5 1 1.5 2

-0.01

-0.005

0

0.005

0.01

0 0.5 1 1.5 2

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 5 10 15 20 25

0

1

2

3

4

5

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a
n
g
le

 d
y
n
a
m

ic
s
 e

rr
o
r

(r
a
d
/s

)

time (s) segment index

segment index

a
n
g
le

 e
rr

o
r

(r
a
d
)

p
o
s
it

io
n
 e

rr
o
r

(m
)

Error in di�erential equations Estimate of state error

Fig. 11. Plots showing the error in the system dynamics along the optimal trajectory for the cart-pole swing-up example.
The plots on the left show the error in the differential equations, while the plots on the right show the integral of that error
over each segment.

18

7. Five-link biped example. In this section we will use trajectory optimization to find a periodic
walking gait for a five-link (planar) biped walking model. This model is commonly used when studying
bipedal walking robots [25,43,48,54,66,67]. For this example, we will use the model developed by [66], with
parameters that are selected to match the walking robot RABBIT [13] and given in Appendix §E.2.

We will assume that the robot is left-right symmetric, so we can search for a periodic walking gait using
a single step (as opposed to a stride, which would consist of two steps). A periodic walking gait means that
joint trajectories (torques, angles, and rates), are the same on each successive step. We will be optimizing
the walking gait such that it minimizes the integral of torque-squared along the trajectory.

7.1. Five-link biped: model. Figure 12 shows the five-link biped model as it takes a step. This
model consists of a torso connected to two legs, each of which has an upper and lower link. The stance leg
is supporting the weight of the robot, while the swing leg is free to move above the ground. Each link is
modeled as a rigid body, with both mass and rotational inertia. Links are connected to each other with ideal
torque motors across frictionless revolute joints, with the exception of the ankle joint, which is passive. We
have included the derivation of the equations of motion for this model in Appendix F.

7.2. Five-link biped: system dynamics. During single stance, the five-link biped model has five
degrees of freedom: the absolute angles of both lower legs (q1 and q5), both upper legs (q2 and q4), and the
torso (q3), as shown in Figure 12. We will collect these configuration variables into single vector q. Because
the model has second order dynamics, we must also keep track of the derivative of the configuration: q̇.
Thus, we can write the state and the dynamics as shown below, where q̈ is calculated from the system
dynamics.

x =

[
q

q̇

]

ẋ = f
(
x,u

)
=

[
q̇

q̈

]

Unlike the cart-pole, the dynamics function ẋ = f
(
x,u

)
cannot easily be written in closed form. We have

shown one method for deriving and evaluating the system dynamics in Appendix F.

7.3. Five-link biped: objective function. Just like in the cart-pole example, we will use the integral
of torque-squared cost function. This cost function tends to produce smooth, well-behaved solutions. This is
desired for a few reasons. First, a smooth solution means that a piece-wise polynomial spline will do a good
job of approximating the solution, thus the non-linear program will converge well. The second reason is that
a smooth solution is easier to control on a real robotic system. Finally, minimizing the torque-squared tends
to keep the solution away from large torques, which are sometimes undesirable on real robotic systems.

(7.1) J =

∫ T

0

(
5∑

i=1

u2
i (τ)

)

dτ

There are many other cost functions that we could have used. One common one is cost of transport
(CoT), the ratio of energy used over the trajectory to the horizontal distance moved by the robot [8, 59]. It
turns out that CoT is a difficult cost function to optimize over, because the solutions tend to be discontinuous.
The simple example in Section §8 shows a few ways to deal with such discontinuities.

7.4. Five-link biped: constraints. A variety of constraints are required to produce a sensible walking
gait. The constraints presented here are similar those used in [66].

First, we will require that the walking gait is periodic. That is, the initial state must be identical to the
final state after it is mapped through heel-strike. Heel-strike is the event that occurs when the swing foot
strikes the ground at the end of each step, becoming the new stance foot. For a single step, let’s define x0 to
be the initial state, and xF to be the final state on the trajectory, immediately before heel-strike. Then we
can express the periodic walking constraint as shown below, where fH(·) is the heel-strike map, as defined
in Appendix §F.

(7.2) x0 = fH

(
xF

)

Next, we would like the biped to walk at some desired speed. There are many ways to do this, but what
we have chosen here is to prescribe the duration of a single step (T), and then put a equality constraint on

19

swing foot

stance foot

hip

stance knee

(torque motor)

links have mass and

rotational inertia

no ankle torque

torso motor torque

swing knee

(torque motor)
link orientation

Fig. 12. Illustration of the five-link biped model. We assume that the biped is a planar kinematic chain, with each joint
is connected to its parent by an ideal revolute joint and torque source. The biped is under-actuated, because the stance ankle
has no motor.

step length (D). Additionally, we assume that the robot is walking on flat ground. This constraint can then
be written as shown below, where P5(T) is the position of the swing foot at the end of the step, and P0(t) is
the position of the stance foot throughout the step. Note that we use the [] notation to show a two element
column vector, where the top element is the horizontal component and the bottom element is the vertical
component.

(7.3) P5(T) =

[
D
0

]

(Note: P0(t) =

[
0
0

]

by definition)

We have added an additional constraint on the biped robot to make the problem more interesting: that
the stance ankle torque is identically zero throughout the trajectory. This constraint is essentially like saying
‘the robot has small feet’, and is widely used in the Hybrid Zero Dynamics technique for controlling walking
robots [66].

When we derived the heel-strike collision equations (see Appendix §F), we assumed that the trailing
foot left the ground at the instant the leading foot collided with the ground. We can ensure that this is
true by introducing a constraint that the vertical component of the swing foot velocity at the beginning of
the trajectory must be positive (foot lifting off the ground), and that it must be negative at the end of the
trajectory (foot moving towards the ground). These constraints can be expressed as inequality constraints
on the initial and final state, where n̂ is the normal vector of the ground. In our case, n̂ =

[
0
1

]
, because the

ground is flat and level.

(7.4) 0 < Ṗ5(0) · n̂ 0 > Ṗ5(T) · n̂

Next we have a constraint to keep the swing foot above the ground at all times, shown below. Interest-
ingly, the optimal solution for the minimum torque-squared walking gait keeps the foot above the ground
(at least for our chosen set of parameters) so this constraint is unnecessary.

(7.5) 0 < P5(t) · n̂ ∀t ∈ (0, T)

In some cases, it might be desirable to achieve some ground clearance for the swing foot, or to work with
some non-flat ground profile. There are a few ways to do this. The easiest is to require that the swing foot
remain above some continuous function y(t) of time. A slightly more complicated version is to prescribe
some continuous function y(x) that the swing foot must remain above, such as a simple quadratic or cubic
polynomial. In both cases, it is critical that the constraint is consistent with the boundary conditions and
that that the implementation is smooth, to avoid over-constraining the problem. Both methods are shown
below, where î =

[
1
0

]
and ĵ =

[
0
1

]
.

y(t) < P5(t) · n̂ ∀t ∈ (0, T) foot clearance (time-based)(7.6)

y
(
P5(t) · î

)
< P5(t) · ĵ ∀t ∈ (0, T) foot clearance (state-based)(7.7)

20

Finally, it is worth noting one mistake that is common in these optimizations: redundant constraints.
Notice, for example, that for step length we only put a constraint on the final position of the foot (7.3).
The initial position is fully constrained given (7.3) and the periodic step map constraint (7.2). If we were to
add a constraint on the initial position of the foot, it would only serve to cause numerical problems in the
non-linear program.

7.5. Five-link biped: initialization. When we solve the trajectory optimization problem, we need
to provide an initial guess for the trajectory. In this case, we created this guess by constructing an initial
and final state, and then using linear interpolation to obtain intermediate states. We constructed the final
state by selecting joint angles that formed a reasonable walking pose. We then computed the initial joint
angles by applying the step map (see F.9) to the final state.

(7.8) q(0)guess =

−0.3
0.7
0.0
−0.5
−0.6

 q(T)guess =

−0.6
−0.5
0.0
0.7
−0.3

(7.9) qguess(t) = qguess(0) +
t

T

(
qguess(T)− qguess(0)

)

We initialized the joint rates by differentiating the joint angle guess.

(7.10) q̇guess(t) =
d

dt

(

qguess(t)

)

=
1

T

(
qguess(T)− qguess(0)

)

Finally, we initialize the joint torques to be constant at zero.

(7.11) uguess(t) = 0

Note that this initial guess does not satisfy the system dynamics (or most of the other constraints), but
it does provide something that is close to the desired walking motion. This is the key feature of an initial
guess - that it starts the optimization close enough to the desired behavior so that the optimization will find
the ‘correct’ solution.

7.6. Five-link biped: results. We solved this example problem in Matlab, using FMINCON’s [36]
interior-point algorithm as the non-linear programming solver. The physical parameters that we used are
given in Appendix E.2, and the optimization was computed on a regular desktop computer2. We chose to use
analytic gradients (Appendix F) for the entire problem, although similar results are obtained for numerical
gradients.

All source code for solving this trajectory optimization problem, including derivation of the equations
of motions, is given in the electronic supplement (see Appendix §A).

We solved the problem on two meshes, using Hermite-Simpson collocation in both cases. The initial
mesh had 5 segments, and a low convergence tolerance (in FMINCON, ’TolFun’ = 1e-3). For the second
(final) mesh, we used a mesh with 25 segments, and increased the convergence tolerance in FMINCON to
’TolFun’ = 1e-6. Both meshes had segments of uniform duration. This process could be repeated
further, to achieve increasingly accurate solutions.

The solution on the initial (5-segment) mesh took 0.96 seconds to compute and 29 iterations in FMIN-
CON’s interior-point method. The solution on the final (25-segment) mesh took 21.3 seconds to compute
and 56 iterations in the NLP solver.

As an aside, if we solve the problem using FMINCON’s build-in numerical derivatives, rather than
analytic derivatives, we get the same solution as before, but it takes longer: 4.30 seconds and 29 iterations
on the coarse mesh, and 79.8 seconds and 62 iterations on the fine mesh. Also, for this problem, it turns
out that solving on two different meshes is not critical; we could directly solve the problem on the fine (25
segment) mesh, and obtain similar results.

The solution for a single periodic walking step is shown in Figure 13 as a stop-action animation with
uniformly spaced frames. The same trajectory is also shown in Figure 14, with each joint angle and torque
given as a continuous function of time. Finally, Figure 15 shows the error estimates computed along the
trajectory.

2processor: 3.4GHz quad-core Intel i5-3570K

21

Fig. 13. Illustration of the optimal trajectory for the five-link biped example. The poses are uniformly spaced in time and
the biped is moving from left to right.

0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8

-30

-20

-10

0

10

20

30

40

50

stance hip

swing hip

stance knee

swing knee

stance fem
ur

stance tibia

torso

swing femur

swing tibia

li
n
k
 a

n
g
le

 (
ra

d
)

jo
in

t
to

rq
u
e
 (

ra
d
)

time (sec) time (sec)

Fig. 14. Plots showing the optimal trajectory for the five-link biped example. Notice that the curves are smooth, partially
due to the integral of torque-squared cost function. The torque curve for the stance ankle u1 = 0 is not shown, because it is
zero by definition.

8. Block move example (minimum-work). In this section, we will revisit the simple block-moving
example from §2, but with a more challenging objective function. All other details of the problem remain
unchanged: the block must move between two points that are one unit of distance apart in one unit of time,
starting and finishing at rest. The new objective function is to minimize the integral of the absolute value
of the work done by the force acting on the block.

It turns out that there is a simple analytic solution to this problem: apply maximum force to get the
block up to speed, then let the block coast, then apply maximum negative force to bring it to a stop at
the target point. This type of solution, which consists of alternating periods of maximum and zero control
effort, is known as a bang-bang solution. Bang-bang solutions are difficult to handle with standard direct
collocation because the discretization method (based on polynomial splines) cannot accurately approximate
the discontinuity in the solution. In this section, we will study a few commonly used techniques for dealing
with such discontinuities in the solution to a trajectory optimization problem.

8.1. Block move example: problem statement. Our goal here is to move a block one unit along
a one-dimensional friction-less surface, in a one unit of time, along a trajectory that minimizes the integral
of the absolute work done by the control force u. The objective function is given below, where the position
and velocity of the block are given by x and ν respectively.

(8.1) min
u(t), x1(t), ν(t)

∫ 1

0

|u(τ) ν(τ)| dτ

22

0 0.1 0.2 0.3 0.4 0.5 0.6

-5

0

5

5 10 15 20 25

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6

-5

0

5

5 10 15 20 25

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6

-1

0

1

5 10 15 20 25

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6

-1

0

1

5 10 15 20 25

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6

-5

0

5

5 10 15 20 25

5

10

15

Error in di�erential equations (rad/s) Joint angle error estimate (rad)

segment indextime (s)

Fig. 15. Plots showing the error in the system dynamics along the optimal trajectory for the five-link biped example.
These error estimates are computed using the techniques described in §5.3.

We will assume that the block has unit mass and slides without friction, so we can write it’s dynamics as
shown below.

(8.2) ẋ = ν ν̇ = u

Next, the block must start at the origin, and move one unit of distance in one unit of time. Note that the
block must be stationary at both start and finish.

(8.3)
x(0) = 0
ν(0) = 0

x(1) = 1
ν(1) = 0

Finally, we will assume that the force moving the block is bounded:

(8.4) −umax ≤ u(t) ≤ umax

8.2. Block move example: analytic solution. The analytic solution to this problem can be con-
structed using a slightly modified version of the method shown in Appendix B, but constraints on the control
and the non-linear objective function in this problem makes the resulting formulation somewhat complicated.
Instead, we will use simple intuition to make a guess at the form of the analytic solution. We find that the
numerical results converge to this analytic solution, which suggests (but does not prove) that it is the correct
solution.

We start by observing that in the case where umax → ∞ there is a feasible solution with zero cost:
the control is a delta function at the boundaries (positive at the beginning, negative at the end) and zero
otherwise. We can then extend this solution to non-zero values of umax by using a bang-bang control law:
maximum force, then zero force, then minimum force. This leaves two unknowns in the control trajectory:
the two switching times, which can be solved for using the boundary values for the problem. The resulting

23

controller is given below.

(8.5) u∗(t) =

umax t < t∗

0 otherwise

−umax (1− t∗) < t

where t∗ =
1

2

(

1−

√

1−
4

umax

)

The most important aspect of this solution to notice is that the control u(t) is discontinuous. This
means that that the linear and quadratic spline control approximations used by the trapezoidal and Hermite-
Simpson collocation methods cannot perfectly represent this solution, although they can get arbitrarily close
with enough mesh refinement. One way to obtain a more precise solution would be pose this problem as
a multi-phase trajectory optimization problem [45]. These methods are briefly discussed in Section §9.9,
and amount to solving the problem as a sequence of three coupled trajectories, allowing the discontinuity to
occur precisely at the switching points between trajectories.

Another interesting point is that if umax < 4 then there is no feasible solution for the trajectory: the
switching is imaginary. Finally, if there is no force limit umax → ∞ then the solution is impulsive: not just
discontinuous, but a delta function.

8.3. Block move example: discontinuities. There are two types of discontinuities present in this
example problem. The first is obvious: the abs() in the objective function (8.1). The second discontinuity
is found in the solution (8.5) itself.

There are two ways to handle the discontinuity in the objective function, both of which we will cover
here. The first is to re-write the abs() using slack variables, thus pushing the discontinuity to a constraint,
which are easily handled by the non-linear programming solver. The second is to replace the abs() with a
smooth approximation. Both methods work, although they have different implications for the convergence
time and solution accuracy, as will be demonstrated in §8.7.

The discontinuity in the solution is a bit harder to detect and address. We can detect the discontinuity
by observing that the optimization is slow to converge, and by visually inspecting the resulting trajectories.
If you’re stuck using single-phase direct collocation, like the methods presented in this paper, then the best
way to handle the discontinuity is to smooth the problem (if possible) and then to use mesh refinement to
make a dense collocation grid near the discontinuity. If you have access to a multi-phase solver (see §9.9)
then you can break the trajectory into multiple segments, and force the discontinuity to occur between the
segments.

8.4. Block move example: initialization. We will compute an initial guess for position by linear
interpolation between the initial position x(0) = 0 and final position x(1) = 1. We then set the velocity
guess to be the derivative of position, and the force (acceleration) to be the derivative of velocity. There are
many other schemes that could be used, we choose this one because it is simple and effective. Once we have
an initial trajectory, we can evaluate it at each collocation point to obtain values to pass to the non-linear
programming solver.

xinit(t) = t(8.6)

νinit(t) = d
dt
xinit(t) = 1(8.7)

uinit(t) = d
dt
νinit(t) = 0(8.8)

8.5. Block move example: slack variables. The most ‘correct’ way to rewrite the objective function
(8.1) is using slack variables: this moves the discontinuity from the objective function to a constraint. The
slack variable approach here is taken from [6]. The benefit of rewriting the trajectory optimization problem
using slack variables to represent the absolute value function is that it is mathematically identical to the
original optimization problem. That being said, there are a few downsides to this method. The first is that
the solution will still be discontinuous, and direct collocation cannot precisely represent it (although it can
get arbitrarily close). Second, the addition of slack variables will greatly increase the size of the non-linear
program: two additional controls and three additional constraints at every collocation point, for each abs().
Finally, the slack variables are implemented using a path constraint, which tends to cause the non-linear
program to converge more slowly.

24

Fig. 16. Comparison of two smooth approximations for the absolute value function: hyperbolic tangent smoothing (left)
and Square-root smoothing (right).

The key idea behind the slack variable approach is that you can push the discontinuity from the objective
function to a constraint, where the non-linear programming solver can properly handle it. We start by
introducing two slack variables (s1 and s2), and rewriting the objective function. Note that the slack
variables here are to be treated as decision variables for the purposes of transcription.

(8.9) min
u(t), x(t), v(t)

∫ 1

0

∣
∣u(t) v(t)

∣
∣ dτ → min

u(t), x(t), v(t)

s1(t), s2(t)

∫ 1

0

(
s1(τ) + s2(τ)

)
dτ

Next, we introduce a few constraints. The first require that the slack variables be positive:

(8.10) 0 ≤ s1(t) 0 ≤ s2(t)

Finally, we require that the difference between the slack variables is equal to the term inside of the abs()
function (8.1).

(8.11) s1(t)− s2(t) = u(t) v(t)

This set of constraints (8.10) and (8.11) means that s1(t) represents the positive part of the argument to the
abs() function, while s2(t) represents the magnitude of the negative part.

The system dynamics, boundary constraints, and force limits remain unchanged. This modified version
of the problem is now acceptable to pass into a non-linear programming solver. There are many possible
ways to initialize the slack variables, but we’ve found that s1(t) = s2(t) = 0 is a good place to start.

The resulting non-linear program does not solve quickly, but the solver will eventually find a solution.
The result will be the best possible trajectory, given the limitations caused by the spline approximation in
the transcription method, as shown in Section §8.7.

8.6. Block move example: smoothing. Although the slack variable method for representing abs()
is exact, the resulting non-linear program can be complicated to construct and slow to solve. An alternative
approach is to replace the abs() function with a smooth approximation. This method is simple to implement
and solve, but at a loss of accuracy. Here we will discuss two smooth approximations for abs(), both of
which are given below and plotted in Figure 16.

(8.12) yα(x) = x tanh

(
x

α

)

≈ |x|

(8.13) yβ(x) =
√

x2 + β2 ≈ |x|

The smooth approximation to abs() using the hyperbolic tangent function (8.12), also known as exponential
smoothing, is always less than |x|, while the approximation using the square-root function (8.13) is always
greater than |x|. The smoothing parameters α and β can be used to adjust the amount of smoothing on the
problem, with the smooth versions of the functions approaching |x| as α → 0 and β → 0. The size of these
smoothing parameters and choice of smoothing method are both problem dependent. In general, smaller
values for the smoothing parameters make the non-linear program increasingly difficult to solve, but with a
more accurate solution.

25

Slack Variables Tanh Smoothing

 (= 0.01)

Tanh Smoothing

 (= 1.0)

Tanh Smoothing

 (= 5.0)

Segment Count = 8

Iteration Count = 29

NLP Time = 0.10 sec

Segment Count = 24

Iteration Count = 76

NLP Time = 0.42 sec

Segment Count = 96

Iteration Count = 263

NLP Time = 10.21 sec

fo
rc

e
fo

rc
e

fo
rc

e

time

time

time

-10

-10

-10

10

10

10

0

0

0 1

1

1

Segment Count = 8

Iteration Count = 28

NLP Time = 0.10 sec

Segment Count = 24

Iteration Count = 78

NLP Time = 0.43 sec

Segment Count = 96

Iteration Count = 192

NLP Time = 7.33 sec

fo
rc

e
fo

rc
e

fo
rc

e

time

time

time

-10

-10

-10

10

10

10

0

0

0 1

1

1

Segment Count = 8

Iteration Count = 33

NLP Time = 0.32 sec

Segment Count = 24

Iteration Count = 78

NLP Time = 0.88 sec

Segment Count = 96

Iteration Count = 301

NLP Time = 27.13 sec

fo
rc

e
fo

rc
e

fo
rc

e

time

time

time

-10

-10

-10

10

10

10

0

0

0 1

1

1

Segment Count = 8

Iteration Count = 53

NLP Time = 0.32 sec

Segment Count = 24

Iteration Count = 126

NLP Time = 0.77 sec

Segment Count = 96

Iteration Count = 415

NLP Time = 17.28 sec

fo
rc

e
fo

rc
e

fo
rc

e

time

time

time

-10

-10

-10

10

10

10

0

0

0 1

1

1

Fig. 17. Plots showing the solution to the minimal-work block-moving example, computed using various methods and
parameters. In each case, the analytic solution is given by a dashed black line, and the solid colored line gives the numerical
solution using direct collocation. The left column shows the solution when the abs() in the objective function is handled with
slack variables. The remaining columns show the result obtained using tanh() smoothing, for light smoothing (α = 0.01),
medium smoothing (α = 1.0), and heavy smoothing (α = 5.0). Notice that the solution obtained using slack variables and light
smoothing are similar to each other, with the smoothing taking more iterations but less time. The problem solves even faster
with medium and heavy smoothing, although the accuracy of the solution accuracy is degraded. Note that the smoothed version
of the problem results in a more smooth solution.

One important thing to note is that smoothing fundamentally changes the optimization problem, and not
necessarily in an obvious way. For this reason, it is important to do convergence tests, solving the problem
with successively smaller and smaller values for the smoothing parameter to ensure the correct solution is
obtained. An example of this can be found in both [55] and [9].

8.7. Block move example: results. We solved this more complicated version of the block moving
problem using the trapezoidal collocation method, and we used FMINCON’s [36] interior-point solver to
solve the non-linear program. Although this optimization problem appears simple, it is actually difficult to
numerically solve without careful mesh refinement (or re-posing the problem using multi-phase trajectory
optimization, see §9.9). To illustrate some trade-offs, we have solved the problem on three different meshes,
using both slack variables and smoothing to handle the abs() function in the objective. Figure 17 shows
the solution for each of these different set-ups, and compares each to the analytic solution. All solutions were
obtained using the same solver settings and initialization, and the source code is included in the electronic
supplement (Appendix §A).

One interesting thing to notice is that all of these solutions require a large number of iterations to
solve the non-linear program, when compared to both the cart-pole swing-up problem and the five-link
biped problem. This might seem odd, since this block-pushing problem looks like it should be easier. The
difficulty, as best we can tell, comes from the discontinuity in the solution.

The solution obtained using slack variables (left column) converges to the analytic solution, although
it takes some time and a very fine mesh. The solution using light smoothing (α = 0.01) is quite close to
the solution obtained with slack variables, although the smooth version of the problem take more iterations
(because the problem is stiff), and less time (because of the smaller number of decision variables). As the
smoothing parameter is increased (α = 1.0 and α = 5.0), the solution is obtained faster, at a loss of accuracy.

26

Open-Loop Solution Close-Loop Solution(optimal trajectory) (optimal policy)

A

B B

Fig. 18. Comparison of an open-loop solution (optimal trajectory) with a closed-loop solution (optimal policy). An open-
loop solution (left) to an optimal control problem is a sequence of controls u(t) that move the system from a single starting
point A to the destination point B. In contrast, the closed-loop solution gives the controls u(x) that can move the system from
any point in the state space to the destination point B.

9. Background. The topics in this section are selected to provide the reader with a broad under-
standing of some of the concepts that are related to direct collocation. We start with a few topics about
optimization in general and then move on to other methods for solving trajectory optimization problems.
We conclude with a method comparison and a list of optimization software.

9.1. Trajectory optimization vs parameter optimization. Trajectory optimization is concerned
with minimizing a functional J

(
f(t)

)
, where f(t) is an arbitrary vector function. In contrast, parameter

optimization is concerned with minimizing some function J(x), where x is a vector of real numbers. This
makes trajectory optimization more challenging than parameter optimization, because the space of functions
is much larger than the space of real numbers.

9.2. Open-loop vs. closed-loop solutions. Trajectory optimization is a collection of techniques
that are used to find open-loop solution to an optimal control problem. In other words, the solution to a
trajectory optimization problem is a sequence of controls u∗(t), given as a function of time, that move a
system from a single initial state to some final state. This sequence of controls, combined with the initial
state, can then be used to define a single trajectory that the system takes through state space.

There is another set of techniques, known as dynamic programming, which find an optimal policy. Unlike
an optimal trajectory, an optimal policy provides the optimal control for every point in the state space.
Another name for the optimal policy is the closed-loop solution to the optimal control problem. An optimal
trajectory starting from any point in the state space can be recovered from a closed-loop solution by a simple
simulation. Figure 18 illustrates the difference between an open-loop and a closed-loop solution.

In general, trajectory optimization is most useful for systems that are high-dimensional, have a large
state space, or need to be very accurate. The resulting solution is open-loop, so it must be combined with a
stabilizing controller when applied to a real system. One major short-coming of trajectory optimization is
that it will sometimes fail to converge, or converge to a locally optimal solution, failing to find the globally
optimal solution.

Dynamic programming (computing an optimal policy) tends to be most useful on lower-dimensional
systems with small but complex state spaces, although some variants have been applied to high-dimensional
problems [42]. There are two advantages to dynamic programming over trajectory optimization. The first is
that dynamic programming gives the optimal control for every point in state space, and can thus be applied
directly to a real system. The second, and perhaps more important advantage is that it will (at least in the
basic formulations) always find the globally optimal solution. The downside of dynamic programming is that
computing the optimal solution for every point in the state space is very expensive, scaling exponentially
with the dimension of the problem — the so-called ‘curse of dimensionality’ [41].

9.3. Continuous-time and discrete-time systems. Trajectory optimization is generally concerned
with finding optimal trajectories for a dynamical system. The dynamics describe how the state of a system
changes in response to some input or decision, typically referred to as a control.

There are many different types of dynamical systems. In this tutorial we have focused on continuous-
time dynamical systems, which have continuous time, state, and control. This type of system is common
in robotics and the aerospace industry, for example planning the trajectory that a spacecraft would take

27

between two planets.

(9.1) ẋ = f(t,x,u) continuous-time system

Another common system is a discrete-time dynamical system, which has discrete time-steps, but continuous
state and control. This type of system is commonly used in model predictive control, for example in building
climate control systems [35]. Trajectory optimization for these systems is generally easier than on fully
continuous systems. Discrete-time systems are often constructed to approximate continuous time systems.

(9.2) xk+1 = fk(xk,uk) discrete-time system

A final type of dynamical system is a directed graph, where there is a finite set of states (nodes on the graph)
and controls (transitions, actions, edges on the graph). Most algorithms for computing an optimal policy
(optimal control from every point in the state space) require the dynamical system to be in this discrete
form. A common example would be a traffic network, where there is a discrete set of states (cities), and a
discrete set of controls (roads out of each city). Sometimes continuous-time problems are abstracted into
this form so that they can make use of sophisticated graph search algorithms to approximate the optimal
policy.

9.4. Indirect methods. Both the trapezoidal and Hermite–Simpson collocation methods presented in
this tutorial are direct methods, which discretize the trajectory optimization problem, converting it into a
non-linear program. There are another set of methods for solving trajectory optimization problems, known
as an indirect methods. Indirect methods analytically construct the necessary and sufficient conditions for
optimality. Then they discretize these conditions and solve them numerically. A common way to categorize
these two methods is that a direct method discretizes and then optimizes, while an indirect method optimizes
and then discretizes.

Let’s consider a simple scalar optimization problem to illustrate how an indirect method works: mini-
mizing y = f(t). Basic calculus tells us that the minimum value y∗ = f(t∗) will occur when the derivative
is zero y′(t∗) = 0. Additionally, we need to check that the curvature is positive: y′′(t∗) > 0, ensuring that
we have a local minimum, rather than a local maximum (or saddle point). If both of those conditions hold,
then we know that y∗ = f(t∗) is indeed a local minimum. An indirect optimization works along the same
principle, but the conditions are a bit more difficult to construct and solve. In contrast, a direct method will
minimize y(t) by constructing a sequence of guesses such that each subsequent guess is an improvement on
the previous: y(t0) > y(t1) > . . . > y(t∗) [6].

The major benefit of an indirect method, when compared to a direct method, is that an indirect method
will generally be more accurate and have a more reliable error estimate. Both of these benefits come from
the analytic expressions for the necessary and sufficient conditions that the user derives while constructing
the indirect problem.

There are several difficulties associated with indirect methods when compared to direct methods. For
example, the region of convergence tends to be smaller for indirect methods than direct methods, which
means that an indirect method will require a better initialization [5]. Furthermore, the initialization of an
indirect method is complicated by the need to initialize the adjoint variables, which are not used in a direct
method [6]. Finally, in order to obtain an accurate solution for an indirect method, it is typically necessary
to construct the necessary and sufficient conditions analytically, which can be challenging [5].

9.5. Direct single shooting. Like direct collocation, the direct single shooting method (also known as
single shooting) solves a trajectory optimization problem by transforming it into a non-linear program. The
key difference is that a direct shooting method approximates the trajectory using a simulation. The decision
variables in the non-linear program are an open-loop parameterization of the control along the trajectory, as
well as the initial state. Direct shooting is well suited to applications where the control is simple and there
are few path constraints, such as space flight. [5]

9.6. Direct multiple shooting. A common extension of the direct single shooting method is direct
multiple shooting (also called parallel shooting). Rather than represent the entire trajectory as a single
simulation, the trajectory is divided up into segments, and each segment is represented by a simulation.
Multiple shooting tends to be much more robust than single shooting, and thus is used on more challenging
trajectory optimization problems [5].

28

When compared to collocation methods, shooting methods tend to create small dense non-linear pro-
grams, which have fewer decision variables that are more coupled. One difficulty with direct shooting methods
is that it is difficult to implement path constraints, since the intermediate state variables are not decision
variables in the non-linear program [5]. Another difficulty with shooting methods, particularly with direct
shooting, is that the relationship between the decision variables and constraints is often highly nonlinear,
which can cause poor convergence in some cases [5, 6].

9.7. Orthogonal collocation. Orthogonal collocation is similar to direct collocation, but it generally
uses higher-order polynomials. The collocation points for these methods are located at the roots an or-
thogonal polynomial, typically either Chebyshev or Legendre [15]. Increasing the accuracy of a solution is
typically achieved by increasing either the number of trajectory segments or the order of the polynomial in
each segment.

One important reason to use high-order orthogonal polynomials for function approximation is that
they achieve spectral convergence. This means that the convergence rate is exponential in the order of the
polynomial [51], if the underlying function is sufficiently smooth [58]. In cases where the entire trajectory is
approximated using a single high-order polynomial, the resulting method is called pseudospectral collocation
or global collocation [51].

One of the key implementation details about orthogonal collocation is that the trajectory is represented
using Barycentric Interpolation [4], rather than directly from the definition of the orthogonal polynomial.
Barycentric interpolation provides a numerically efficient and stable method for interpolation, differentiation,
and quadrature, all of which can be computed by knowing the trajectory’s value at the collocation points.
See Appendix §D for further details about how to work with orthogonal polynomials.

9.8. Differential dynamic programming. One final method is Differential Dynamic Programming.
It is similar to direct shooting, in that it simulates the system forward in time, and then optimizes based on
the result of that simulation. The difference is in how the optimization is carried out. While direct shooting
uses a general-purpose non-linear programming solver, the differential dynamic programming algorithm
optimizes the trajectory by propagating the optimal control backward along the candidate trajectory. In
other words, it exploits the time-dependent nature of the trajectory. It was described in [30,38], and a good
overview was provided by [40].

9.9. Multi-phase methods. There are many trajectory optimization problems that have a sequence
of continuous motion phases separated by discrete jumps. One common example is the trajectory of a
multi-stage rocket, which has continuous motion punctuated by discrete changes when each stage separates.
Another example is the gait of a walking robot, which has a discontinuity as each foot strikes the ground.
Solving a multi-phase problem is sort of like solving multiple single-phase problems in parallel. The key
difference is that the boundary constraints between any two phases can be connected, thus coupling the
trajectory segments. Multi-phase methods are covered in detail in [45, 63].

9.10. Through-contact methods. Through-contact methods are specialized for computing optimal
trajectories for hybrid dynamical systems that describe contact mechanics: imagine the gait of a walking
robot, or two objects colliding and then falling to the ground. Most physics simulators use a complementarity
constraint to model contact between two rigid objects: a contact force is allowed if and only if the two objects
are in contact. The key idea in through-contact optimization is to treat the contact forces as decision variables
in the optimization, and then apply a complementarity constraint at each grid point: the contact force must
be zero unless the objects are in contact. These methods are covered in detail in [47], [46], and [39].

9.11. Which method is best?. In short, there is no best method for trajectory optimization. There
are many trade-offs between the different methods, and a good understanding of these trade-offs will help
determine which method is best for a specific application. A good high-level comparison of methods can also
be found in [5] and [51]. Here I will provide a brief overview of some of these trade-offs.

In general, indirect methods tend to produce more accurate solutions than direct methods, at the cost
of being more difficult to construct and solve. This is because indirect methods explicitly compute the
necessary and sufficient conditions for optimality of the original problem, while a direct method precisely
solves a discrete approximation of the original problem. One common approach to obtain accurate solutions
is to first compute an approximation of the solution using a direct method, and then use this to initialize an

29

Table 1

Trajectory Optimization Software

Name License Interface Method

GPOPS-II [45] commercial Matlab direct orthogonal collocation

PSOPT [2] open source C++ direct collocation

SOS [7] commercial GUI direct collocation (methods from [6])

DIRCOL [63] free license C direct collocation

DIDO [52] commercial Matlab indirect orthogonal (pseudospectral) collocation

Table 2

Non-Linear Programming Solvers

Name License Interface

FMINCON [36] Matlab (commercial) Matlab

SNOPT [50] commercial C++

IPOPT [64] open source C++

indirect method. As a side note: both shooting and collocation (transcription) methods can be applied to
either a direct or indirect formulation of a trajectory optimization problem [6].

Shooting methods are best for applications where the dynamics must be computed accurately, but the
control trajectory is simple. For example, computing the trajectory of a spacecraft, where you occasionally
fire the thrusters to change course, but are otherwise are following a ballistic trajectory. Multiple shooting
methods are generally preferred over single shooting, except in cases where the control is very simple or the
initial guess is very good.

Collocation (transcription) methods are best for applications where the dynamics and control must be
computed to a similar accuracy, and the structure of the control trajectory is not known a priori. For
example, computing the torque to send to the joints of a robot as it performs some motion.

Both shooting and collocation methods can be either low- or high-order. High-order collocation methods
are given a special name: orthogonal collocation. Trapezoidal collocation would be considered a low-order
method, while Hermite–Simpson collocation would usually be considered a medium-order method. The trade-
off between using a method with more low-order segments or few high-order segments is complicated [16]. The
general approach is to use a relatively lower-order method to obtain an initial solution to the trajectory, and
then perform an error analysis [6,16]. The result will indicate whether it is better to re-mesh the trajectory
using additional lower-order segments, or replacing lower-order segments with higher-order segments.

In situations where you need to compute trajectory for a hybrid system, there are two choices: multi-
phase optimization (§9.9) and through-contact optimization (§9.10). Multi-phase optimization is preferable
for most situations: the optimizations are easier to compute and tend to be more accurate. Through-contact
optimization is preferable when the the discontinuities are due to contact mechanics and the sequence of
continuous motion phases is unknown.

9.12. Trajectory optimization software. There are a variety of software programs that solve tra-
jectory optimization problems, some of which are given in Table 1. Each of these solvers performs some
transcription method and then hands the problem off to a non-linear programming solver. Table 2 shows
a few popular software packages for solving non-linear programming problems. The electronic supplement,
described in Appendix §A, also includes a Matlab library for trajectory optimization. It was written to go
along with this tutorial, and it implements trapezoidal and Hermite-Simpson collocation, as well as all four
examples problems.

10. Summary. The goal of this tutorial is to give the reader an understanding of the concepts required
to implement their own direct collocation methods. We focus primarily on trapezoidal and Hermite–Simpson
collocation, and we briefly touch on a variety of other methods. We include practical suggestions, debugging
techniques, and a complete set of equations and derivations. Throughout the tutorial we convey concepts

30

through a sequence of four example problems, and the electronic supplement shows how to solve each example
using Matlab.

Appendix A. Overview of electronic supplementary material. This tutorial has an electronic
supplement that accompanies it. The supplement was written to go with this tutorial and contains two
parts. The first part is a general purpose trajectory optimization library, written in Matlab, that solves the
trajectory optimization problems of the type presented here. The second part of the supplement is a set of
code that solves each of the example problems in this tutorial. There are a few other Matlab scripts, which
can be used to derive some of the equations in the text and to generate some of the simple figures.

All of the source code in the electronic supplement is well documented, with the intention of making it
easy to read and understand. Each directory in the supplement contains a README file that gives a summary
of the contents.

A.1. Trajectory optimization code. This supplement includes a general-purpose Matlab library for
solving trajectory optimization problems, written by the author. The source code is well-documented, such
that it can be read as a direct supplement to this tutorial. This code is still under development, and the
most up-to-date version is publicly available on GitHub:
https://GitHub.com/MatthewPeterKelly/OptimTraj

The trajectory optimization code allows the user to choose from four different methods: trapezoidal
direct collocation, Hermite-Simpson direct collocation, 4th-order Runge–Kutta direct multiple shooting, and
Chebyshev orthogonal collocation (global lobatto method). The user can switch between methods by chang-
ing a single field in the options struct and easily specify a mesh refinement schedule.

The solution is returned to the user at each grid-point along the trajectory. In addition, a function
handle is provided to compute method-consistent interpolation for each component of the solution and both
direct collocation methods provide the user an error estimate along the solution trajectory.

A.2. Example problems. The electronic supplement includes a solution (in Matlab) to each of the
four examples in this tutorial. Each example is in its own directory, and calls the trajectory optimization
code from Appendix §A.1. Some example problems are implemented with many files, but the entry-point
script always has the prefix MAIN. In some cases an additional script, with the prefix RESULTS is included,
which is used to generate figures from the tutorial.

Both the cart-pole and five-link biped examples make use of the Matlab symbolic toolbox to generate
their equations of motion. These automatically generated files have the prefix autoGen , and are created
by a script with the prefix Derive.

Appendix B. Analytic solution to block-move example. In this section we show how to find
the analytic solution to the block-moving problem from Section 2. The method presented here is based on
calculus of variations, and is described in detail in the textbook by Bryson and Ho [11]. Here we show two
slightly different solution methods. The first solution, in Section B.1, treats the problem as a true optimal
control problem, where the state and control are separate and the dynamics are handled with multiplier
functions. The second solution, in Section B.2, simplifies the problem by first substituting the dynamics into
the cost function.

B.1. Full solution. We would like to minimize the cost functional J(), given below, where u is the
control force applied to the block.

(B.1) J(t, z, u) =

∫ 1

0

u2(τ) dτ

The system dynamics f() are given below, where x is position, ν is velocity, and z = [x, v]T is the state
vector.

(B.2) ż =

[
ẋ
ν̇

]

= f(z, u) =

[
v
u

]

We will also apply the following boundary conditions, where subscripts are used to denote evaluation at the
boundary points on the trajectory.

(B.3) z0 = z(t)|t=0 =

[
x0

ν0

]

=

[
0
0

]

z1 = z(t)|t=1 =

[
x1

ν1

]

=

[
1
0

]

31

We need to satisfy the dynamics to ensure a feasible solution. This is done by modifying the cost functional
to include the system dynamics and a vector of multiplier functions λ = [λx, λν]

T . Notice that when the
dynamics are satisfied f − ż = 0 and thus J̄ = J regardless of what the multiplier functions are.

(B.4) J̄ =

∫ 1

0

(
u2(τ) + λT (f − ż)

)
dτ

Now we can use integration by parts to re-write the modified cost function [11]. Here again we use the
subscript notation to indicate evaluation at the boundary condition (e.g λ0 = λ(t)|t=0).

(B.5) J̄ = λT
0 z0 − λT

1 z1 +

∫ 1

0

(
u2(τ) + λTf

)
+
(

λ̇Tz
)

dτ

At this point, it is useful to define two quantities that will be useful throughout the rest of the derivation.
The first is the Lagrangian L, which is the term inside the integral of the original cost function J . The second
term is the Hamiltonian H, which is the sum of the Lagrangian and product of the multiplier functions with
the system dynamics [11].

L = u2(B.6)

H = L+ λTf = u2 + λxν + λνu(B.7)

Consider a simple optimization problem: finding the minimum of a scalar function. The minimum will occur
when the first derivative is zero and the second derivative is positive. A similar principle can be used for
trajectories, although we use the term variation instead of derivative. An optimal trajectory must have a
first variation equal to zero, and a second variation that is non-negative. Here we will focus on the necessary
condition: that the first variation is zero.

Let’s suppose that the optimal trajectory is given by z∗ and u∗. A trajectory that is sub-optimal can
now be written as a sum of the optimal trajectory and a small perturbation from that trajectory, as shown
below where ε is a small parameter and δz and δu are small (arbitrary) variations in the state and control.

(B.8) δz = z∗ + ε δz u = u∗ + ε δu

The first variation of the cost function is its partial derivative with respect to this small parameter ε.

(B.9) δJ̄ ≡
∂

∂ε
J̄

∣
∣
∣
∣
ε=0

Using the chain rule, we can now write out an expression for the first variation of the cost function [11].

δJ̄ = λT
0

∂z0
∂ε

∣
∣
∣
∣
ε=0

− λT
1

∂z1
∂ε

∣
∣
∣
∣
ε=0

+

∫ 1

0

[
∂H

∂ε

∣
∣
∣
∣
ε=0

+ λ̇T ∂z

∂ε

∣
∣
∣
∣
ε=0

]

dτ(B.10)

δJ̄ = λT
0 δz0 − λT

1 δz1 +

∫ 1

0

[(
∂H

∂z
+ λ̇T

)

δz +
∂H

∂u
δu

]

dτ(B.11)

The first variation of the cost function δJ̄ (B.11) must be zero along the optimal trajectory. The variations
in state at the initial and final points on the trajectory are zero, since the boundary conditions are fixed
(δz0 = 0, δz1 = 0). Thus the first two terms in (B.11) are both zero. The variations in state δz and in
control δu along the trajectory are arbitrary, thus each of their coefficients must be zero in order for the
integral term to be zero.

δH

δz
+ λ̇T = 0(B.12)

δH

δu
= 0(B.13)

These two equations (B.12) and (B.13) form the necessary conditions for optimality: a solution that satisfies
them will be at a stationary point. To be rigorous, we would also need to show that the second variation is

32

non-negative, which implies that that solution is at a minimum (as opposed to a maximum or saddle point).
This calculation is beyond the scope of this paper, but is covered in [11].

The next step is to solve for the multiplier functions, which we do by rearranging (B.12) to give us of
differential equations as shown below.

−λ̇T =
δH

δz
(B.14)

λ̇ = −

(
∂L

∂z

)T

−

(
∂f

∂z

)T

λ(B.15)

We can now evaluate (B.15) for our specific problem.

(B.16)

[
λ̇x

λ̇ν

]

= −

[
0
0

]

−

[
0 0
1 0

] [
λx

λν

]

This system of equations (B.16) is linear, and thus a solution is easily obtained, where c0 and c1 are constants
of integration and time is given by t.

λx = c0(B.17)

λν = c1 − c0t(B.18)

Now that we know the multiplier functions, we can go back and solve for the control functions using (B.13).

0 =
∂H

∂u
(B.19)

0 =
∂

∂u

(
u2 + λxν + λνu

)
(B.20)

0 = 2u+ 0 + (c1 − c0t)(B.21)

u = 1
2 (c0t− c1)(B.22)

We can use the system dynamics to obtain expressions for the position and velocity as functions of time, as
shown below.

ν =

∫

u(τ) dτ = 1
4c0t

2 − 1
2c1t+ c2(B.23)

x =

∫

ν(τ) dτ = 1
12c0t

3 − 1
4c1t

2 + c2t+ c3(B.24)

Next, we need to solve for the unknown constants of integration ci. We can do this by constructing a linear
system from the boundary conditions.

(B.25)

x(0)
v(0)
x(1)
v(1)

=

0
0
1
0

=

0 0 0 1
0 0 1 0
1
12

−1
4 1 1

1
4

−1
2 1 0

c0
c1
c2
c3

Solving the linear system and substituting in the coefficients yields the solution below, which is valid for the
domain of the problem t ∈ [0, 1].

x(t) = −2t3 + 3t2(B.26)

ν(t) = −6t2 + 6t(B.27)

u(t) = −12t+ 6(B.28)

33

B.2. Short solution. For this problem, a shorter solution can be obtained since the control u is simply
the second derivative of the position x. As a result, our cost function can be written:

(B.29) J =

∫ 1

0

u2(τ) dτ =

∫ 1

0

ẍ2(τ) dτ

In this case, we get the Lagrangian:

(B.30) L(t, x, ẋ, ẍ) = L(ẍ) = ẍ2

For a fully rigorous solution, one would need to show that the first variation of the objective function is zero,
and the second variation is non-negative. Here we will focus on the first variation, which is the necessary
condition for the optimal solution x∗. The following equation is constructed using integration by parts:

(B.31)
∂L

∂x∗
−

d

dt

∂L

∂ẋ∗
−

d2

dt2
∂L

∂ẍ∗
= 0

The first two terms are zero, since L depends only on ẍ. The final term can be evaluated and simplified to
arrive at the following ordinary differential equation.

(
0
)
−
(
0
)
−

d2

dt2
(
2ẍ∗
)
= 0(B.32)

d4

dt4
x∗ = 0(B.33)

The solution to this equation is a cubic polynomial with four unknown coefficients, identical to that found
in (B.24). We solve these coefficients using the boundary conditions (B.3) to arrive at the solution:

(B.34) x(t) = −2t3 + 3t2

Appendix C. Derivation of simpson quadrature. Simpson quadrature is used to compute an
approximation to the definite integral of a function by evaluating it at the boundaries and mid-point of the
domain. It is precise when this function (the integrand) is quadratic, and we will use this fact to derive the
rule. Let’s start with a quadratic curve ν(t), given below.

(C.1) ν(t) = A+Bt+ Ct2

Now suppose that we wish to compute a quantity x by integrating the function ν(t).

x =

∫ h

0

ν(t) dt(C.2)

x =

∫ h

0

A+Bt+ Ct2 dt(C.3)

x = At+ 1
2Bt2 + 1

3Ct3
∣
∣
h

0
(C.4)

x = Ah+ 1
2Bh2 + 1

3Ch3(C.5)

We can use the value of ν at three points to uniquely determine the value of the coefficients A, B, and C.
We will choose these points to be at the boundaries and mid-point of the interval:

(C.6) ν(0) = νL ν(h2) = νM ν(h) = νU

Doing a bit of algebra will show that the coefficients are given by:

A = νL(C.7)

Bh = −3νL + 4νM − νU(C.8)

Ch2 = 2νL − 4νM + 2νU(C.9)

34

Finally, we can plug these coefficients into (C.5) and then simplify to arrive at Simpson’s rule for quadrature:

(C.10) x = h
6

(
νL + 4νM + νU

)

Appendix D. Orthogonal polynomials. All direct collocation methods are based on using polyno-
mial splines to approximate continuous functions. The trapezoidal and Hermite–Simpson methods that we
covered in this paper both use relatively low-order polynomial splines. Orthogonal collocation methods are
similar, but use high-order splines instead. Working with these high-order polynomials requires some special
attention to ensure that your implementations are numerically stable.

The basic idea behind function approximation with orthogonal polynomials is that any function can be
represented by an infinite sum of basis functions. The Fourier Series is one well-known example, where you
can represent an arbitrary function by an infinite sum of sine and cosine functions. A rough approximation
of the function can be made by including a small number of terms in the sum, while a more accurate
approximation can be made by including more terms. It turns out that if the function of interest is smooth,
as is often the case in trajectory optimization, then orthogonal polynomials make an excellent choice of basis
function. The number of terms in the infinite series is related to the order of the polynomial: a higher-
order polynomial approximation will be more accurate. There are many papers that cover the detailed
mathematics of orthogonal polynomials [4, 24, 27, 32, 44, 58] and their use in trajectory optimization [3, 15,
18, 19, 21–23, 28, 29, 53, 57, 62]. Here we will focus on the practical implementation details and on gaining a
qualitative understanding of how orthogonal collocation works.

For the rest of this section, let’s assume that we have some function f(t) that we would like to approximate
over the interval [−1, 1]. We can do this using barycentric interpolation: representing the function’s value at
any point on the interval by a convex combination of its value at several carefully chosen interpolation (grid)
points. We will write these points as ti and the value of the function at these points as fi. The set of points
ti can then be used to compute a set of interpolation weights vi, quadrature weights wi, and a differentiation
matrix D. If the points ti are chosen to be the roots of an orthogonal polynomial, and the function f(t) is
smooth, then the resulting interpolation, integration, and differentiation schemes tend to be both accurate
and easy to compute. Other distributions of points ti do not given nice results. For example, choosing ti to
be uniformly spaced over the interval will result in numerically unstable schemes [4].

Orthogonal collocation techniques for trajectory optimization make extensive use of these properties of
orthogonal polynomials. In particular, the differentiation matrix can be used to construct a set of collocation
constraints to enforce the dynamics of a system, the quadrature weights can be used to accurately approx-
imate an integral cost function or constraint, and barycentric interpolation is used to evaluate the solution
trajectory.

For the rest of this section we will assume that the function of interest has been mapped to the interval
t ∈ [−1, 1]. If the function is initially defined on the interval τ ∈ [τA, τB], this mapping can be achieved by:

(D.1) t = 2
τ − τA
τB − τA

− 1

D.1. Computing polynomial roots. An orthogonal polynomial approximation can be defined by
the value of the function f(t) at the roots ti of that orthogonal polynomial . There are many different
orthogonal polynomials to choose from, each of which has slightly different properties. The ChebFun [17]
library for Matlab provides subroutines for computing the interpolation points ti, interpolation weights vi,
and quadrature weights wi for most common orthogonal polynomials.

The Chebyshev orthogonal polynomials are one popular choice, in part because their roots are easy to
compute. The Chebyshev-Lobatto points, also called the Chebyshev points of the second kind, are given
by [58] and shown below.

(D.2) ti = cos

(
iπ

n

)

, 0 ≤ i ≤ n

The Legendre orthogonal polynomials are also commonly used. Unlike the Chebyshev polynomials, the
roots of the Legendre polynomials have no closed-form solution, and must be numerically computed. The

35

Gauss Points Radau Points Lobatto Points

Fig. 19. Illustration showing the three sets of points that are associated with each orthogonal polynomial. In this figure
we have shown the Gauss, Radau, and Lobatto points for the 4th-order Legendre orthogonal polynomials. The dashed line in
each figure is the same, and the solid lines show the barycentric interpolant that is defined by that set of collocation points.
Notice that the interpolant behaves differently for each set of points.

methods for computing these points are given by [24, 27], although various sub-routines can be found with
a quick internet search. ChebFun [17] has a particularly good implementation for Matlab.

There are three commonly used sets of Legendre points. The Legendre-Gauss points are given by the
roots of the Pn(t), the nth-degree Legendre polynomial. The Legendre-Gauss-Radau points are given by the
roots of Pn(t) +Pn−1(t). Finally, the Legendre-Gauss-Lobatto points are given by the roots of Ṗn−1(t) along
with the boundary points −1 and 1 [23].

The important distinction between these three sets of points are whether or not the end-points of the
interval are included in a given set of points. Orthogonal collocation schemes can be constructed from
any of these sets of points, although they will have different properties [23]. Here we have outlined these
points for the Legendre polynomials, but the naming convention (Gauss, Radau, and Lobatto) applies to
any orthogonal polynomial. Figure 19 shows an illustration of the Gauss, Radau, and Lobatto points for the
Legendre orthogonal polynomials.

Collocation methods whose collocation points include both endpoints of a segment are called Lobatto
methods. Two popular Lobatto methods are the trapezoidal collocation and Hermite-Simpson collocation
methods [6]. A high-order Lobatto method based on Chebyshev orthogonal polynomials is described in [19].

A Gauss method is one where the neither endpoint of the segment is a collocation point. A common
low-order example would be the implicit mid-point method. A high-order Gauss method based on Legendre
orthogonal polynomials is described in [21, 26].

Finally, a Radau method is one where a single endpoint of each segment is a collocation point, such as
the backward Euler Method. The trajectory optimization software GPOPS [45] uses a high-order Radau
method, based on Legendre orthogonal polynomials.

These three types of methods are discussed in more detail in [22, 23], and are illustrated in Figure
19. Garg et al. [23] suggest that high-order Lobatto collocation schemes should be avoided in trajectory
optimization, due to poor numerical properties, and that schemes based on Radau and Gauss points should
be preferred.

D.2. Barycentric lagrange interpolation. The best way to store and evaluate high-order orthogonal
polynomials is using barycentric Lagrange interpolation. This works by expressing the value of the function
at any point f(t) using a weighted combination of the function’s value (fi = f(ti)) at the roots of the
orthogonal polynomial (ti). The equation for barycentric interpolation is given below, with further details
in [4]. Note that when this expression is not valid when evaluated at the interpolation points t = ti. This
provides no problem, since the value of the function at these points is already known to be fi.

(D.3) f(t) =

n∑

i=0

vi
t− ti

fi

n∑

i=0

vi
t− ti

Thus far, we know all parameters in (D.3), except for the interpolation weights vi. These weights are
calculated below, using the equation given by [4].

(D.4) vi =
1

∏

j 6=i(ti − tj)
, i = 0, . . . , n

36

Interestingly, the barycentric interpolation formula (D.3) will still interpolate the data at points fi if
the weights vi are chosen arbitrarily. The choice of weights given by (D.4) is special in that it defines the
unique polynomial interpolant, where other any other choice of weights will result in interpolation by some
rational function [4]. Notice that these weights can be scaled by an arbitrary constant, and still produce the
correct interpolation in (D.3), as well as the correct differentiation matrix (D.6). For example, ChebFun [17]
normalizes the barycentric weights such that the magnitude of the largest weight is 1.

In an orthogonal collocation method, barycentric interpolation would be used to evaluate the solution.
It is not used when constructing the non-linear program; the decision variables of the non-linear program
are the values of the state and control at each collocation point ti.

D.3. Differentiation matrix. Another useful property of orthogonal polynomials is that they are
easy to differentiate. Let’s define a column vector f = [f0, f1, ... fn]

T which contains the value of f() at
each interpolation point ti. It turns out that we can find some matrix D that can be used to compute the
derivative of f() at each interpolation point (D.5).

(D.5) ḟ = Df

Each element of the differentiation matrix D can be computed as shown below, using a formula from [4].

(D.6) Dij =

vj/vi
ti − tj

i 6= j

−
∑

i6=j

Dij i = j

We can use the same interpolation weights vi for interpolation of this derivative — we just replace the fi
terms in (D.3) with ḟi to get the equation below.

(D.7) ḟ(t) =

n∑

i=0

vi
t− ti

ḟi

n∑

i=0

vi
t− ti

D.4. Quadrature. Each type of orthogonal polynomial has a corresponding quadrature rule to com-
pute its definite integral. In orthogonal collocation, these quadrature rules are used to evaluate integral
constraints and objective functions. The quadrature rule is computed as shown below, and is a linear
combination of the function value at each interpolation point (ti).

(D.8)

∫ 1

−1

f(τ) dτ ≈

n∑

i=0

wi · fi

Typically these quadrature weights (wi) are computed at the same time as the interpolation points (ti)
and weights (vi). Alternatively, the quadrature weights can be determined directly from the interpolation
points and weights, although the equations are specific to each type of orthogonal polynomial. For example,
the Legendre-Gauss quadrature weights and the Legendre-Gauss-Lobatto weights can be computed as shown
below.

wi = W
v2i

(1− t2i)
Legendre-Gauss(D.9)

wi = Wv2i Legendre-Gauss-Lobatto(D.10)

In both cases the scaling constant W should be selected such that
∑

wi = 2. This scaling can be derived by
computing the integral of unity fi = 1, as shown below.

(D.11)

∫ 1

−1

dτ = 2 =

n∑

i=0

wi · (1)

More details on the calculation of quadrature rules can be found in [20, 31, 58, 65].

Appendix E. Parameters for example problems. In this section we provide tables for the parameter
values that we used when generating the results for the both the cart-pole swing-up example problem and
the five-link biped example problem.

37

E.1. Cart-pole swing-up parameters. For the cart-pole swing-up example problem we chose pa-
rameters for our model to match something like you might see in a cart-pole in a controls lab demonstration.
These parameters are given in Table 3.

E.2. Five-link biped parameters. For the five-linke biped walking gait example we chose parameters
for our model to match the walking robot RABBIT [13, 66] which are reproduced here in Table 4. We also
selected a trajectory duration of T = 0.7s and a step length of D = 0.5m.

Appendix F. Biped dynamics. In this section we will cover some of the more detailed calculations
for the five-link biped model of walking, including kinematics, single stance dynamics, heel-strike dynamics,
and gradients. We will assume that the reader has a solid understanding of the dynamics of rigid body
mechanisms, as well as experience deriving equations of motion using a symbolic algebra computer package,
such as the Matlab Symbolic Toolbox [37].

F.1. Kinematics. Let’s start by defining the position vectors that point from the origin P0 to each joint
of the robot Pi and the center of mass of each link Gi, as shown in Figure 21. Each of these position vectors
is dependent on the configuration of the robot: Pi = Pi(q) and Gi = Gi(q), where q = [q1 q2 q3 q4 q5]

T is a
column vector of absolute link orientations. We will define P0 = 0.

There are many ways to compute the position vectors. Here we work from the root joint P0 outward
along the kinematic chain, defining each successive position Pi in terms of a previously defined position
vector Pi−1 and a relative vector in the link frame.

Once the position vectors are defined, we compute velocity and acceleration vectors using the chain rule.
The velociies are given below, where q̇ = [q̇1 q̇2 q̇3 q̇4 q̇5]

T is the vector of absolute angular rates.

(F.1) Ṗi =

(
∂Pi

∂q

)

q̇ Ġi =

(
∂Gi

∂q

)

q̇

Table 3

Physical parameters for the cart-pole example.

Symbol Value Name
m1 1.0 kg mass of cart
m2 0.3 kg mass of pole
ℓ 0.5 m pole length
g 9.81 m/s2 gravity acceleration
umax 20 N maximum actuator force
dmax 2.0 m extents of the rail that cart travels on
d 1.0 m distance traveled during swing-up
T 2.0 s duration of swing-up

Table 4

Physical parameters for the five link biped model (RABBIT) [13]

Symbol Value Name
m1,m5 3.2 kg mass of tibia (lower leg)
m2,m4 6.8 kg mass of femur (upper leg)
m3 20 kg mass of torso

I1, I5 0.93 kg-m2 rotational inertia of tibia, about its center of mass

I2, I4 1.08 kg-m2 rotational inertia of femur, about its center of mass

I3 2.22 kg-m2 rotational inertia of torso, about its center of mass
ℓ1, ℓ5 0.4 m length of tibia
ℓ2, ℓ4 0.4 m length of femur
ℓ3 0.625 m length of torso
d1, d5 0.128 m distance from tibia center of mass to knee
d2, d4 0.163 m distance from femur center of mass to hip
d3 0.2 m distance from torso center of mass to hip

38

torso
stance femur

stance tibia

swing femur

swing tibia

swing foot

stance foot

hip

stance knee

Fig. 20. Dynamics model for the five-link biped model, shown here in single stance. We assume that the dynamics are
planar (2D) and modeled as a kinematic chain, with each link assigned a number: 1 = stance tibia, 2 = stance femur, 3 =
torso, 4 = swing femur, and 5 = swing tibia. Each joint is connected to its parent by an ideal revolute joint and torque source.
Joint torques are given by ui, link masses and inertias by mi and Ii, and gravity is g. The absolute orientation of each link
is given by qi.

Fig. 21. Kinematics for the five-link biped model. The illustration shows both joints Pi and the center of mass of each
link Gi.

The calculation for the acceleration vectors is carried out in a similar fashion, although we need to include
the joint rates in the list of partial derivatives. We can do this by defining: z = [q q̇]T and ż = [q̇ q̈]T ,
where q̈ = [q̈1 q̈2 q̈3 q̈4 q̈5]

T .

(F.2) P̈i =

(

∂Ṗi

∂z

)

ż G̈i =

(

∂Ġi

∂z

)

ż

Both of these calculations (F.1) and (F.2) can be implemented in Matlab with the following commands,
where all variables are defined to be column vectors.

>> dP = Jacobian(P,q)*dq;

>> dG = Jacobian(G,q)*dq;

>> ddP = Jacobian(dP,[q; dq])*[dq; ddq];

>> ddG = Jacobian(dG,[q; dq])*[dq; ddq];

F.2. Single-stance dynamics. In trajectory optimization it is best to use a minimal coordinate for-
mulation of the dynamics: one where there is one equation for each degree of freedom. For this example
we will use the absolute angle of each link in the robot for the minimal coordinates, and compute their
accelerations (the equations of motion) using the Newton-Euler equations. Although it is possible to derive
these equations by hand, we suggest that you use a computer algebra package for the derivation, such as the
Matlab Symbolic Toolbox [37] or the Python Symbolic Library [56].

The goal of the dynamics calculations are to arrive at a set of equations define the link accelerations q̈ in
terms of the link angles q, rates q̇, and torques u = [u1 u2 u3 u4 u5]

T . Here we will use computer algebra to
generate a linear system of equations, which we will then solve numerically at run time for the accelerations

39

old stance foot new stance footcollision lift-off

before

heel-strike
after

heel-strike

Fig. 22. Illustration of the kinematics of the five-link biped model both before − and after + heel-strike. Note that the
points on the robot are re-labeled during the collision, reflecting the left-right symmetry of the robot.

q̈. It turns out that this approach is significantly faster (both run time and derivation time) than solving
for the joint accelerations explicitly.

(F.3) M(q) · q̈ = F(q, q̇,u)

For our five-link biped, there are five linearly independent equations required to construct (F.3), one
for each degree of freedom. One way to construct such a system is to write out the equations for angular
momentum balance about each successive joint in the robot. Here we will start with angular momentum
balance of the entire robot about the stance foot joint (below). Note that the left side of the equation is a
sum over all external torques applied to the system about point P0, the stance foot. The right side of the
equation gives the time rate of change in the angular momentum of the system about P0.

(F.4) u1 + k̂ ·

5∑

i=1

(

(Gi − P0)× (−mi g ĵ)
)

= k̂ ·

5∑

i=1

(

(Gi − P0)× (mi G̈i) + q̈i Ii k̂
)

The next equation is obtained by simply moving one joint out along the robot, computing the angular
momentum balance about the stance knee P1.

(F.5) u2 + k̂ ·

5∑

i=2

(

(Gi − P1)× (−mi g ĵ)
)

= k̂ ·

5∑

i=2

(

(Gi − P1)× (mi G̈i) + q̈i Ii k̂
)

The remaining three equations are given below, following a similar pattern. Notice that the pattern slightly
breaks down at the hip joint, because link 3 and link 4 are both connected to the hip joint P2.

(F.6) u3 + k̂ ·

5∑

i=3

(

(Gi − P2)× (−mi g ĵ)
)

= k̂ ·

5∑

i=3

(

(Gi − P2)× (mi G̈i) + q̈i Ii k̂
)

(F.7) u4 + k̂ ·

5∑

i=4

(

(Gi − P2)× (−mi g ĵ)
)

= k̂ ·

5∑

i=4

(

(Gi − P2)× (mi G̈i) + q̈i Ii k̂
)

(F.8) u5 + k̂ ·

5∑

i=5

(

(Gi − P4)× (−mi g ĵ)
)

= k̂ ·

5∑

i=5

(

(Gi − P4)× (mi G̈i) + q̈i Ii k̂
)

F.3. Heel-strike dynamics. For our biped walking model, we will assume that the biped transitions
directly from single stance on one foot to single stance on the other: as soon as the leading foot strikes the
ground, the trailing foot leaves the ground. This transition is known as a heel-strike map. We will also
assume that this transition occurs instantaneously and that the robot is symmetric.

There are two parts to the heel-strike map. The first is an impulsive collision, which changes the joint
velocities throughout the robot, but does not affect the configuration (angles). The second part of the map

40

swaps the swing and stance legs. The leg swap is done to enforce a symmetry in the solution: we want the
step taken by the left leg to be identical to the right, and for both to be periodic.

Figure 22 shows the biped model immediately before and after the heel-strike map. Notice that the old
swing foot P−

0 , has become the new stance foot P+
5 after the map. Similar re-naming has been applied

throughout the robot, and can be computed using the following equation.

(F.9) q+ =

0 0 0 0 1

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 q−

Next we derive a linear system that relates the angular rates before and after the collision. Like the single-
stance dynamics, we will solve this system numerically at run time.

(F.10) MH(q−) · q̇+ = FH(q−, q̇−)

One way to derive this system of equations is to observe that the system must conserve angular momentum
about the collision point, as well as all joints in the robot. The five equations defining the system are given
below. Notice that the left side of each equation is the angular momentum of the entire system before heel-
strike, taken about the swing foot (which is about to become the new stance foot). The right side of each
equation is the angular momentum of the entire system after heel-strike, taken about the stance foot (which
was previously the swing foot). Figure 22 shows the naming conventions used throughout these equations.
Note that the structure of these equations is somewhat similar to those used for the single stance dynamics.

(F.11) k̂ ·

5∑

i=1

(

(G−
i − P−

5)× (mi Ġ
−
i) + q̇−i Ii k̂

)

= k̂ ·

5∑

i=1

(

(G+
i − P+

0)× (mi Ġ
+
i) + q̇+i Ii k̂

)

(F.12) k̂ ·

4∑

i=1

(

(G−
i − P−

4)× (mi Ġ
−
i) + q̇−i Ii k̂

)

= k̂ ·

5∑

i=2

(

(G+
i − P+

1)× (mi Ġ
+
i) + q̇+i Ii k̂

)

(F.13) k̂ ·

3∑

i=1

(

(G−
i − P−

2)× (mi Ġ
−
i) + q̇−i Ii k̂

)

= k̂ ·

5∑

i=3

(

(G+
i − P+

2)× (mi Ġ
+
i) + q̇+i Ii k̂

)

(F.14) k̂ ·

2∑

i=1

(

(G−
i − P−

2)× (mi Ġ
−
i) + q̇−i Ii k̂

)

= k̂ ·

5∑

i=4

(

(G+
i − P+

2)× (mi Ġ
+
i) + q̇+i Ii k̂

)

(F.15) k̂ ·

1∑

i=1

(

(G−
i − P−

1)× (mi Ġ
−
i) + q̇−i Ii k̂

)

= k̂ ·

5∑

i=5

(

(G+
i − P+

4)× (mi Ġ
+
i) + q̇+i Ii k̂

)

Our final step is to combine (F.9) and (F.10) into the heel-strike map equation, shown below, where x−

is the state of the system before heel-strike and x+ is the state after heel-strike.

(F.16) x− =

[
q−

q̇−

]

x+ =

[
q+

q̇+

]

(F.17) x+ = fH

(
x−
)

41

F.4. Gradients. For trajectory optimization, it is generally a good idea to use analytic gradients where
possible. This means that we will need to calculate the following expressions:

(F.18)
∂q̈

∂q

∂q̈

∂q̇

∂q̈

∂u

∂q̇+

∂q−

∂q̇+

∂q̇−

Unfortunately, we can’t use the Jacobian() command in the symbolic software, because we plan to cal-
culate q̈ and q̇+ by numerically solving a linear system at run time. The solution is to use the symbolic
software to compute the gradients of M, F , MH , and FH and then derive an expression for the gradient of
q̈ and q̇+ in terms of these known matrices. We start by deriving the gradient of the matrix inverse operator.

M
−1

M = I(F.19)

∂

∂qi

(
M

−1
M
)

= 0(F.20)

∂

∂qi

(
M

−1
)
M + M

−1 ∂

∂qi
(M) = 0(F.21)

∂M−1

∂qi
= −M

−1 ∂M

∂qi
M

−1(F.22)

We will now apply (F.22) to compute gradient of the link accelerations q̈ with respect to a single link angle
qi. This process can then be repeated for the partial derivatives with respect to the remaining joint angles,
rates q̇i, and torques ui. These same calculations (F.25) can be applied to the heel-strike calculations.

∂q̈

∂qi
=

∂

∂qi

(
M

−1
F
)

(F.23)

∂q̈

∂qi
=

(

−M
−1 ∂M

∂qi
M

−1

)

F + M
−1

(
∂F

∂qi

)

(F.24)

∂q̈

∂qi
= M

−1

(

−
∂M

∂qi
q̈ +

∂F

∂qi

)

(F.25)

42

REFERENCES

[1] S. Agrawal, S. Shen, and M. V. D. Panne, Diverse motion variations for physics-based character animation, Proceed-
ings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation - SCA ’13, (2013), pp. 37–44.

[2] V. M. Becerra, PSOPT Optimal Control Solver User Manual, 2011.
[3] D. a. Benson, G. T. Huntington, T. P. Thorvaldsen, and A. V. Rao, Direct Trajectory Optimization and Costate

Estimation via an Orthogonal Collocation Method, Journal of Guidance, Control, and Dynamics, 29 (2006), pp. 1435–
1440.

[4] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange Interpolation, SIAM Review, 46 (2004), pp. 501–517.
[5] J. T. Betts, A Survey of Numerical Methods for Trajectory Optimization, Journal of Guidance, Control, and Dynamics,

(1998), pp. 1–56.
[6] , Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Siam, Philadelphia, PA,

2010.
[7] , SOS: Sparse Optimization Suite - User’s Guide, 2013.
[8] P. a. Bhounsule, J. Cortell, a. Grewal, B. Hendriksen, J. G. D. Karssen, C. Paul, and a. Ruina, Low-bandwidth

reflex-based control for lower power walking: 65 km on a single battery charge, The International Journal of Robotics
Research, 33 (2014), pp. 1305–1321.

[9] P. a. Bhounsule, J. Cortell, A. Grewal, B. Hendriksen, J. G. D. Karssen, C. Paul, and A. Ruina, MULTIMEDIA
EXTENSION # 1 International Journal of Robotics Research Low-bandwidth reflex-based control for lower power
walking : 65 km on a single battery charge, International Journal of Robotics Research, (2014).

[10] L. T. Biegler and V. M. Zavala, Large-scale nonlinear programming using IPOPT: An integrating framework for
enterprise-wide dynamic optimization, Computers and Chemical Engineering, 33 (2009), pp. 575–582.

[11] A. E. Bryson and Y.-C. Ho, Applied Optimal Control, Taylor & Francis, 1975.
[12] E. Catto, Box2D User Manual, 2013.
[13] B. C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt, C. Canudas-de wit, and J. W. Grizzle,

RABBITA Testbed for Advanced Control Theory, IEEE Control Systems Mag., 23 (2003), pp. 57–79.
[14] E. Coumans, Bullet Physics SDK Manual, 2015.
[15] C. L. Darby, D. Garg, and A. V. Rao, Costate Estimation using Multiple-Interval Pseudospectral Methods, Journal of

Spacecraft and Rockets, 48 (2011), pp. 856–866.
[16] C. L. Darby, W. W. Hagar, and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems,

Optimal Control Applications and Methods, 32 (2011), pp. 476–502.
[17] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford, 1 ed., 2014.
[18] G. Elnagar, M. A. Kazemi, and M. Razzaghi, The Pseudospectral Legendre Method for Discretizing Optimal Control

Problems, IEEE, 40 (1995), pp. 1793–1796.
[19] G. N. Elnagar and M. a. Kazemi, Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems,

Computational Optimization and Applications, 217 (1998), pp. 195–217.
[20] B. Fornberg, A practical guide to pseudospectral methods, Cambridge University Press, 1996.
[21] C. C. Francolin, D. A. Benson, W. W. Hager, and A. V. Rao, Costate Estimation in Optimal Control Using Integral

Gaussian Quadrature Orthogonal Collocation Methods, Optimal Control Applications and Methods, (2014).
[22] D. Garg, M. Patterson, and W. Hager, An Overview of Three Pseudospectral Methods for the Numerical Solution of

Optimal Control Problems, Advances in the . . . , (2009), pp. 1–17.
[23] D. Garg, M. Patterson, W. W. Hager, A. V. Rao, D. a. Benson, and G. T. Huntington, A unified framework for the

numerical solution of optimal control problems using pseudospectral methods, Automatica, 46 (2010), pp. 1843–1851.
[24] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Mathematics of Computation, 23 (1968),

pp. 221–221.
[25] J. W. Grizzle, J. Hurst, B. Morris, H. W. Park, and K. Sreenath, MABEL, a new robotic bipedal walker and

runner, Proceedings of the American Control Conference, (2009), pp. 2030–2036.
[26] W. W. Hager and A. V. Rao, Gauss Pseudospectral Method for Solving Infinite-Horizon Optimal Control Problems,

(2010), pp. 1–9.
[27] N. Hale and A. Townsend, Fast and Accurate Computation of Gauss–Legendre and Gauss–Jacobi Quadrature Nodes

and Weights, SIAM Journal on Scientific Computing, 35 (2013), pp. A652–A674.
[28] C. R. Hargraves, C. R. Hargraves, S. W. Paris, S. W. Paris, C. R. Margraves, and S. W. Paris, Direct Trajectory

Optimization Using Nonlinear Programming and Collocation, AIAA J. Guidance, 10 (1987), pp. 338–342.
[29] A. L. Herman and B. A. Conway, Direct optimization using collocation based on high-order Gauss-Lobatto quadrature

rules, {AIAA} Journal of Guidance, Control, and Dynamics, 19 (1996), pp. 522–529.
[30] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming, Elsevier, 1970.
[31] G. Klein and J.-P. Berrut, Linear barycentric rational quadrature, BIT Numerical Mathematics, 52 (2012), pp. 407–424.
[32] D. P. Laurie, Computation of Gauss-type quadrature formulas, Journal of Computational and Applied Mathematics, 127

(2001), pp. 201–217.
[33] L. Liu, M. V. D. Panne, and K. Yin, Guided Learning of Control Graphs for Physics-Based Characters, ACM Transac-

tions on Graphics, 35 (2016), pp. 1–14.
[34] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Springer, third edit ed., 2008.
[35] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves, Model Predictive Control for the Operation of

Building Cooling Systems, IEEE Transactions on Control Systems Technology, 20 (2012), pp. 796–803.
[36] Mathworks, Matlab Optimization Toolbox, 2014.
[37] , Matlab Symbolic Toolbox, 2014.
[38] D. Mayne, A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear Discrete-time Systems,

International Journal of Control, 3 (1966), pp. 85–95.

43

[39] I. Mordatch, E. Todorov, and Z. Popović, Discovery of complex behaviors through contact-invariant optimization,
ACM Transactions on Graphics, 31 (2012), pp. 1–8.

[40] D. M. Murray and S. J. Yakowitz, Differential dynamic programming and Newton’s method for discrete optimal control
problems, Journal of Optimization Theory and Applications, 43 (1984), pp. 395–414.

[41] A. Ng, Stanford CS 229 Lecture Notes, in Machine Learning, 2012, ch. XIII - Rei, pp. 1–15.
[42] X. B. NPeng, G. Berseth, and M. van de Panne, Dynamic Terrain Traversal Skills Using Reinforcement Learning, in

SIGGRAPH, 2015.
[43] H. W. Park, K. Sreenath, A. Ramezani, and J. W. Grizzle, Switching control design for accommodating large step-

down disturbances in bipedal robot walking, Proceedings - IEEE International Conference on Robotics and Automation,
(2012), pp. 45–50.

[44] S. V. Parter, On the Legendre-Gauss-Lobatto Points and Weights, Journal of Scientific Computing, 14 (1999), pp. 347–
355.

[45] M. A. Patterson and A. V. Rao, GPOPS II : A MATLAB Software for Solving Multiple-Phase Optimal Control
Problems Using hp Adaptive Gaussian Quadrature Collocation Methods and Spa and rse Nonlinear Programming,
39 (2013), pp. 1–41.

[46] M. Posa, S. Kuindersma, and R. Tedrake, Optimization and stabilization of trajectories for constrained dynamical
systems, Proceedings - IEEE International Conference on Robotics and Automation, 2016-June (2016), pp. 1366–1373.

[47] M. Posa and R. Tedrake, Direct Trajectory Optimization of Rigid Body Dynamical Systems Through Contact, Algo-
rithmic Foundations of Robotics X, (2013), pp. 527–542.

[48] J. Pratt, Virtual Model Control: An Intuitive Approach for Bipedal Locomotion, The International Journal of Robotics
Research, 20 (2001), pp. 129–143.

[49] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, Cambridge University
Press, second edi ed.

[50] L.-s. N. Programming, P. E. Gill, W. Murray, and M. A. Saunders, User ’ s Guide for SNOPT Version 7 : Software
for, (2006), pp. 1–116.

[51] A. Rao, A survey of numerical methods for optimal control, Advances in the Astronautical Sciences, 135 (2009), pp. 497–
528.

[52] I. M. Ross, DIDO, 2001.
[53] I. M. Ross and F. Fahroo, Legendre pseudospectral approximations of optimal control problems, New Trends in Nonlinear

Dynamics and Control and their Applications, 295 (2003), pp. 327–342.
[54] C. O. Saglam and K. Byl, Robust Policies via Meshing for Metastable Rough Terrain Walking.
[55] M. Srinivasan and A. Ruina, Computer optimization of a minimal biped model discovers walking and running., Nature,

439 (2006), pp. 72–5.
[56] SymPy Development Team, SymPy: Python library for symbolic mathematics, 2016.
[57] L. N. Trefethen, A rational spectral collocation method with adaptively transformed chebyshev grid points , 28 (2006),

pp. 1798–1811.
[58] , Approximation Theory and Approximation Practice, SIAM, 2013.
[59] V. a. Tucker, Energetic cost of locomotion in animals., Comparative biochemistry and physiology, 34 (1970), pp. 841–846.
[60] C. D. Twigg and D. L. James, Many-worlds browsing for control of multibody dynamics, ACM Transactions on Graphics,

26 (2007), p. 14.
[61] , Backward steps in rigid body simulation, ACM Transactions on Graphics (TOG), 27 (2008), p. 1.
[62] J. Vlassenbroeck and R. V. Dooren, A Chebyshev technique for solving nonlinear optimal control problems, Automatic

Control, IEEE . . . , 33 (1988).
[63] O. von Stryk, User’s guide for DIRCOL: A direct collocation method for the numerical solution of optimal control

problems, Lehrstuhl für Höhere Mathematik und Numerische, (1999).
[64] A. Wächter and L. T. Biegler, On the implementation of primal-dual interior point filter line search algorithm for

large-scale nonlinear programming, vol. 106, 2006.
[65] H. Wang and S. Xiang, On the Convergence Rate of Legendre Approximation, Mathematics of Computation, 81 (2011),

pp. 861–877.
[66] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, Hybrid zero dynamics of planar biped walkers, IEEE

Transactions on Automatic Control, 48 (2003), pp. 42–56.
[67] T. Yang, E. R. Westervelt, a. Serrani, and J. P. Schmiedeler, A framework for the control of stable aperiodic

walking inunderactuated planar bipeds, Autonomous Robots, 27 (2009), pp. 277–290.

44

