
Two Walking Robot Simulators

Matthew P. Kelly
Cornell University
mpk72@cornell.edu

July 29, 2014

Abstract

This report is an overview of two simulators: One
for a simple bipedal model of walking, and one for
the Cornell Ranger [2]. The simple biped model is
based on three point masses, connected by force ac-
tuators. Ranger is well modeled as a planar biped
with four rigid bodies, connected by three torque mo-
tors. I developed walking control algorithms for both
robots, loosely inspired by the SIMBICON [6] loco-
motion controller.

1 Introduction:

1.1 Ranger Simulator

The Cornell Ranger is a ”four-legged biped”, which is
designed for high-efficiency walking over smooth level
ground. It has four physical legs, but they are me-
chanically coupled such that they act as one ”inner”
and one ”outer” leg. This was intentionally done so
that the robot locomotion is easily modeled using pla-
nar (2D) dynamics. The ”planar robot” is effectively
composed of four rigid bodies: outer foot, outer leg,
inner foot, and inner leg. The feet are curved, allow-
ing them to roll along the ground. There are well-
defined motor models for each of the joint actuators.

1.2 Dynamics Engine

There are a large number of algorithms for comput-
ing the motion of systems of rigid bodies. Previous
work on Ranger has been done by symbolically solv-
ing the Newton-Euler equations for each possible con-
tact configuration during walking (single stance and
double stance), and then using high-order variable-
step integration with event detection. This method
is accurate, but restricts the available behavior of
the robot, and makes it difficult to implement motor
models and control functions with discontinuities.

Most modern rigid body simulation packages take
a more generalizable approach. They use a low-order,

fixed-step integration scheme that checks the configu-
ration of the contacts at each time step. An iterative
algorithm is then used to compute the contact forces
(or impulses). These methods are described in great
detail in review paper by Bender et al. [1]. During
double stance, Ranger will have multiple (two) con-
tact forces acting on each of its rigid bodies. The
paper by Guendelman et al. [3] provides details as to
how to deal with this type of contact.

1.3 Controller Background

My PhD research at Cornell is primarily focused on
locomotion control for biped robots. As such, I am
interested in making this simulation of Ranger walk.
There are a large number of algorithms to do this.
The Hybrid Zero Dynamics (HZD) algorithm uses a
virtual constraint function in the controller to track a
prescribed trajectory [4]. Zero Moment Point (ZMP)
controlled robots (such as Honda’s Asimo) search for
[nearly] statically stably gaits, with reliance on an-
kle torques. Capture Point controlled robots (Mark
Raibert’s hopping robots [5], and [rumored] Boston
Dynamic’s Big Dog and Atlas) view walking as a per-
turbation of falling, relying on carefully placed foot
steps. For this project, I am particularly interested
in the SIMBICON controller [6], which was developed
for control of animated bipeds.

At the highest level of the SIMBICON controller
is a gait selector, which allows the robot to switch
between different gaits {walking, standing, running,
jumping, ...}. The next level down is a finite state ma-
chine, where each state accomplishes a simple action
{pick-up foot, swing leg, extend leg, ...}. Within each
state, a set of two nested Proportional-Derivative
controllers (top level is a local controller, lower level
is a global controller) are then used to compute the
torque at each joint.
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2 Simulation Overview

This report discusses two simulations: the Simple
Biped simulation, and the Ranger Simulator. The
dynamics and control algorithms are different for
these two simulations, but the general architecture of
the simulation is shared (home-made impulse-based
physics engine, written in Java). The remainder of
this section discusses a few neat features of the sim-
ulation architecture.

2.1 Camera Tracking

In both simulations, it is necessary for the camera
to track the robot as it is walking. If the camera is
always looking directly at the robot’s center of mass,
then the simulation looks jerky and it is hard to see
the motion of the robot. This problem is solved by
modelling the camera as a dynamical system, which
is tracking a reference (robot center of mass). Hor-
izontal motion on level ground is made apparent by
adding tick-marks to the ground animation.

2.2 GUI

A graphical user interface (GUI) panel is used in both
simulations for user interaction. This panel allows
the user to adjust the gravity vector, change the sim-
ulation playback speed, and display/hide the contact
impulses. The Simple Biped simulation has a variety
of sliders to adjust the control parameters for each
gait. The Ranger simulator has sliders that adjust
the motor controllers, as well as change the motor
model on the fly.

2.3 Timer

These simulations runs much faster than real time.
A simple pause command is not sufficient to ensure
consistent playback speed, so a proportional-integral
(PI) controller is used to adjust the pause duration
on the fly to compensate for the non-real-time nature
of the operating system. Playback timing error is
typically on the order of milliseconds, in both real-
time and slow-motion modes of operation.

3 Dynamics - Simple Biped

The simple biped model is made up of three point
masses connected by force and torque actuators. This
means that the dynamics for the robot are identical

to those of a system of three point masses. Each point
mass exerts forces on the others via actuators. The
forward simulation was done using symplectic euler
integration. I use continuous collision detection be-
tween each point mass and the ground. The collision
location and time is determined using a linear model
for velocity. Once this is done, the time step is split
into two parts: before and after collision. The simu-
lation then runs each part of the time step using the
correct contact mode. The ground is defined analyt-
ically, either as a sum of sine waves or as a constant,
making it easy to compute the normal and tangential
vectors of the collision impulse at contact.

4 Controller - Simple Biped

The control algorithm for the simple biped is based
on hierarchical finite state machines (FSM). The top
level FSM allows the user to select between three pos-
sible gaits: {STAND, WALK, JUMP}. Each of these
gaits then itself runs a FSM. The STAND and JUMP
gaits use a SIMBICON controller [6]. The WALK
gait uses a heuristic controller, that I developed which
is loosely based on SIMBICON.

4.1 Simple Biped - WALK gait - Dou-
ble Stance

In Double Stance, both feet are on the ground and
work together to deliver a desired force vector to the
hip mass. This desired force vector is composed of
two elements: normal and tangential to the stance
(front) leg. The normal component is calculated us-
ing a PD controller on the stance leg length, forcing
the hip to move like an inverted pendulum. The hip
motor is turned off during double stance.

fN = kp(l̇target − l1)− kd l̇1 (1)

The tangential component is calculated such that it
will attempt to control the energy of the pendulum
model. Calculated as follows:

θ̇target =
−1

l1

√
v2target + 2gl1 cos(θ1) (2)

fT =
−k
l1

(θ̇target − θ̇)1 (3)

Once the desired force vector on the hip is known,
a system of linear equations can be generated to com-
pute the force required along each of the legs (taking
weight into account). These axial leg forces are then
saturated to satisfy actuator limits and then passed
to the motors.
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Figure 1: The normal and tangential target forces on
the hip during double stance

4.2 Simple Biped - WALK gait - Sin-
gle Stance

To make things interesting, I’ve added the constraint
that the walking controller cannot use ankle torque.
This is like walking with small feet. This restric-
tion makes simple controllers fail, since the system is
highly non-linear and under-actuated. The approach
that I take is somewhat similar to the hybrid zero
dynamics (HZD) controllers developed by Grizzle et
al. [4]. Here I use virtual constraints, by way of PD
controllers, to keep the system on low-dimensional
manifold in the state space. Then a phase variable is
used to select a target point along that manifold.

At the core of this algorithm is a Bezier curve,
which the swing foot is attempting to track using
a phase variable. I use a curve with four control
points, at the corners of a rectangle: left edge aligned
with the place where the foot left the ground, top is
(4/3)*(foot clearance), and the right side is set based
on where the foot should strike the ground, assuming
that the ground is level.

The phase variable is computed as a linear function
of center of mass position, projected onto the ground.
The phase variable starts at 0 (swing foot just left the
ground) and goes to 1 (when the foot is expected to
strike the ground). This phase variable then speci-
fies a point on the Bezier curve where the swing foot
should ideally be. A virtual swing leg is then con-
structed, and the real swing leg uses a PD controller
on the leg and hip motors to track the virtual leg.
This is shown in Figure 2. The stance leg againt at-
tempts to maintain a fixed length, to make the system
behave similiarily to an inverted pendulum. All con-

Swing
Leg

Virtual Leg

Stance Leg

Swing Foot
Trajectory

Figure 2: The Bezier curve and virtual leg, used for
trajectory tracking in single stance.

trollers have a nonlinear term that compensates for
the static forces on each actuator due to the weight
of the hip and feet.

This controller is able to create a stable walking
gait for the Simple Biped, including the ability to
start from a stand-still. It also is able to do this
while walking over smooth but hilly ground, with
large (12◦) slopes and changes in elevation of nearly
a third of the nominal leg length.

5 Dynamics - Ranger Model

The dynamics for the Ranger model are more compli-
cated than the simple biped, since Ranger is a closed
kinematic chain of rigid bodies. I model the system
as four rigid bodies, connected by five joints. Three
of the joints connect rigid bodies, and two connect a
rigid body to the ground. I express each joint as a
constraint for the solver.

The pin joint constraints between bodies are sim-
ple, and remain the same throughout the simula-
tion. The body-ground joints are more complicated,
as they have two modes of contact: Pinned and Free
1. For each of these joints, I write out the constraint
for both modes, and then let a finite state machine se-
lect which constraints are active or not when solving
for the contact impulses.

The joint constraints use a position-based scheme,
such that the positions are correct at the end of the
time step. To achieve this, I include the symplec-
tic euler integration step inside of the constraints.

1There should be a third contact mode: Sliding. By ne-
glecting the sliding contact mode, I introduce an error in the
contact mode - allowing the ground to pull on the system or
allowing the foot to penetrate the ground. I tolerate these
errors, since they are corrected by the following time step.

3



Figure 3: A single rigid body for the ranger model
dynamics

This calculation was done symbolically using Mat-
lab, which then automatically wrote the core of the
dynamics file in the physics engine.

Figure 3 shows a free body diagram for a single
rigid body, used as the template for generating joint
constraints. The following equations show the im-
pulse dynamics calculations to compute the change
in rotational and translational velocity. Note that
the dynamics of this model are in 2D.

Υ = k̂ ·
(

(p−1 − x−)× ~J1 + (p−2 − x−)× ~J2

)
/I

(4)

θ̇+ = θ̇− + τ2∆t+ τ1∆t+ Υ (5)

ẋ+ = ẋ− +
(
~J1 + ~J2 +m~g∆t

)
/m (6)

Once the new velocities are known, we use them to
compute the new position (x) and orientation (θ) of
the rigid body and the joint contact points (pi).

θ+ = θ− + θ̇+∆t (7)

x+ = x− + ẋ+∆t (8)

p+1 = p−1 + ∆t
(
ẋ+ (θ̇+k̂)× (p−1 − x−)

)
(9)

p+2 = p−2 + ∆t
(
ẋ+ (θ̇+k̂)× (p−2 − x−)

)
(10)

Now we have a set of equations, for each rigid body,
that give the state at the next time step as a function
of the state at the previous time step and the contact
impulses (which are as of yet unknown). In order
to find the contact impulses, and thus the state of
the system at the next time step, we need to impose
constraints on each joint. For this model, there are
two types of joint contacts: Pin and Free.

Suppose pA is a joint location on body A, and pB
is a joint location on body B. To connect these two
bodies with a pin joint, then the following constraint
equation is imposed:

0 = p+A − p
+
B (11)

For a free joint A, such as the contact point on
the bottom of the foot when the foot is swinging, the
joint forces are constrained to be zero.

0 = ~JA (12)

The bottom of each foot of the robot is actually a
section of a circle. To allow for smooth rolling, at the
start of each time step the contact point for the foot
is computed as the point on the foot that is closest
to the ground. Since the foot is a circle, this calcu-
lation is done from the analytic definition of a circle,
rather than selecting a vertex of the convex polygon.
If the foot is orientated such that the circular sole
of the foot is not on the ground, then the contact
solver will return the heel, toe, or back of the foot as
appropriate.

Since the system is a kinematic chain (or loop), the
contact forces for all joints must be solved simulta-
neously. This is done by way of a matrix inverse 1,
since the system is small (only ten unknowns). The
contact configuration is passed to the dynamics algo-
rithm, which then computes the joint forces based on
these contacts.

At each time step the contact solver runs the dy-
namics algorithm with the current contact configura-
tion. It then selects one of the contacts and checks if
the contact is feasibly at the end of the time step:

switch ( contactMode ){
case FREE:

i f ( contactHeight < groundHeight ) ){
contactMode = ContactMode .PINNED;

}
case PINNED:

i f ( contactImpulse . y < 0) {
contactMode = ContactMode .FREE;

}
}

If the contact was not feasible, then the contact mode
for this contact is switched, and the dynamics solver
re-runs the time step. At this point, the solution is

1The numerical solution for the contact impulses (x = A\b)
was computed using the jblas - Linear Algebra for Java pack-
age.
http://mikiobraun.github.io/jblas/
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accepted without checking feasibility. At the next
time step it will check the other foot.

Interestingly, if you try to modify the contact mode
of both feet in a single time step, then the dynamics
solver goes unstable whenever a contact is changed.
This happens even if you make only one change at a
time and iterate within a given time step. One possi-
ble explanation for this behavior is that the position-
based constraints take two time steps to fix the rel-
ative velocity at the joint when a contact mode is
changed. By alternating contact solves between feet,
it gives each contact two time steps to stabilize. A
simple way to test this would be to examine the sim-
ple case of a rod dropped onto the ground with both
ends striking simultaneously. I ran out of time to do
this experiment.

The feet in this model are very light (0.02 kg) when
compared to the legs (4.96kg). When the feet are on
the ground, it is necessary to use large torques to
move the robot around. Once the foot is in the air,
the same large torques will cause angular accelera-
tions that are too large for the integration method.
This generally doesn’t happen, but occasionally the
controller will give some weird motor torque and I
wanted to prevent the simulation from exploding. To
solve this problem, I saturate the motor torques in
the dynamics algorithm if they are likely to cause dy-
namics that are faster than the current integration
method’s time step will allow.

6 Controller - Ranger Model

The high level controller is a simple finite state
machine (FSM) that has three modes: {WALK,
STAND, GUI}. The switching between these modes
is controller by the commands from the user, either
from the graphical user interface (GUI) or the key-
board. Each of these modes sends a different set of
commands to each joint controller, as detailed below.

There are three motors in the Ranger Model: one
at the hip and one at each ankle. Each of these mo-
tors has a set of simple PD controllers, which are each
used to perform some action.

6.1 Ranger Controller: GUI mode

The GUI mode of the controller allows the user to
manually set the target joint angles for each joint,
as well as the gains for a simple PD joint controller.
This is primarily used for debugging.

hipMotor . setProgram ( ”GUI” ) ;

ankleOneMotor . setProgram ( ”GUI” ) ;
ankleTwoMotor . setProgram ( ”GUI” ) ;

6.2 Ranger Controller: STAND mode

The STAND mode of the controller is the default con-
trol mode. It just uses a simple PD control on each
ankle to keep the absolute orientation of the foot as
level as possible.

hipMotor . setProgram ( ”OFF” ) ;
ankleOneMotor . setProgram ( ”HOLD” ) ;
ankleTwoMotor . setProgram ( ”HOLD” ) ;

6.3 Ranger Controller: WALK mode

The WALK mode of the controller is used to make
the robot walk. The robot is right-left symmetric, so
it needs to mirror the controller each step. Rather
than use a FSM to do this switching, a program runs
on every time step to pick which leg should be the
stance leg and which should be the swing leg. There
is a contact estimator inside of this program that uses
a second-order Butterworth filter to prevent the con-
tacts from rapidly switching when the foot bounces
on the ground. This contact estimator is also used
to determine which part of the gait the robot is in
(Single-Stance or Double-Stance) 2.

switch ( contactMode ) {

case SINGLE :
i f ( swingFootAng > c r i t i c a lFoo tAng ){

swingAnkMotor . setProgram ( ”PUSH” ) ;
} else {

swingAnkMotor . setProgram ( ”FLIP” ) ;
}
stanceAnkMotor . setProgram ( ”HOLD” ) ;
hipMotor . setProgram ( ”SWING” ) ;

case DOUBLE:
i f ( swingLegAng > c r i t i c a lLegAng ){

swingAnkMotor . setProgram ( ”FLIP” ) ;
} else {

swingAnkMotor . setProgram ( ”HOLD” ) ;
}
stanceAnkMotor . setProgram ( ”HOLD” ) ;
hipMotor . setProgram ( ”OFF” ) ;

2The robot should not reach the flight phase of motion, but
if it does then it just uses a PD controller to hold the current
joint angles until contact is made with the ground.
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}

6.4 Motor Model:

Several years ago, a motor model was created for the
motors on Ranger. In this simulation, I use this mo-
tor model for calculating torque (for dynamics) and
power (for cost of transport). The following parame-
ters were experimentally determined and published in
the appendix to the main design paper on the Cornell
Ranger [2].

• Imax - maximum allowed current

• G - transmission gear ratio

• K - Motor constant

• Cd - viscous friction coefficient

• C - constant friction term

• Cτ - load dependent friction

• R - motor resistance

• V0 - internal voltage drop

• I0 - internal current drop

For a given joint angular rate (ω) and applied
current(I), the joint torque (τ) and power (P ) can
be computed as follows:

d = sign(w) (13)

τ = GKI(1 + dCτ ) + ωGCd + dC (14)

V = I

(
R+

V0√
I2 + I20

+GKω

)
(15)

P = IV (16)

For walking robots it is useful to have a non-
dimensional number for measuring efficiency. One
such quantity is the cost of transport (CoT), the in-
stantaneous cost of transport is given in equation 17.
This value is typically averaged over many steps to
compare different robots or gaits.

CoT =
MotorPower

Weight · Speed
(17)

6.5 Motor Controllers:

Each motor controller has a simple PD controller on
the command current, which has the following form:

Icmd = kp ∗ (θ0 − θ) + kd ∗ (θ̇0 − θ̇) (18)

This simple PD controller was used inside of all motor
programs on the hip motor, and for all ankle motor

programs when the foot was on the ground. When the
foot was in the air, a special controller was used, since
the foot mass and inertia are negligible when com-
pared to linkage inertia when it is on the ground. A
model-based controller was used instead, which made
the joint act as if it was a virtual spring-mass-damper
system, with a known damping ratio and natural fre-
quency. Note the non-linear term that is used to can-
cel the gravity torque acting on the foot.

kp = ω2
0Ifoot

kd = 2ξω2
0Ifoot

τgravity = (~rcom − ~rjoint)× (~gmfoot)

τcmd = kp ∗ (θ0 − θ) + kd ∗ (θ̇0 − θ̇) + τgravity

Icmd = τcmd/ (GK)

6.6 Controller Results:

The walking controller is nearly stable. If you were
to compute the step map for the system, you would
find that there was at least one fast stable eigenvalue
and at least one slow but unstable eigenvalue. This
produces a behavior where the system rapidly ap-
proaches a periodic trajectory, but then slowly di-
verges. This behavior is observed on the controller
described above. It is almost certainly possible to
adjust the many parameters of this controller to pro-
duce a mathematically stable gait, although it might
require numerical optimization, rather than trial and
error guessing. A better solution would be to modify
the controller so that it was able to adjust it’s own
parameters based on the state of the system. One
example would be increasing the force of the push-off
during double stance. Another would be to change
the step length to modulate the energy lost on the
next heel-strike.

7 Conclusion

For my project I created two simulations of bipedal
walking: one for a simple biped model and another
for the Cornell Ranger. The models use a shared
simulation architecture, but have distinct dynamics
and control algorithms.

The dynamics for the simple biped model were
easy to implement, along with a sophisticated col-
lision handling algorithm. On the other hand, the
dynamics for Ranger were quite difficult. The diffi-
culty was not in the dynamics themselves but rather
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in finding a stable scheme for detecting and handling
collisions between the feet and the ground.

Both simulations were able to generate walking be-
havior, although the simple biped controller is much
more stable than the Ranger controller. The simple
biped controller is loosly based on SIMBICON, al-
though there are several features of my own design.
The Ranger controller is somewhat based on the ex-
isting controller on the real robot, with several small
modifications.

I’ve uploaded a few animations produced by the
simulators to the internet:

• Video 1 - (http://youtu.be/zvAufKB83g4)
- Video of the Ranger Model walking over level
ground.

• Video 2 - (http://youtu.be/t1N4WNsyY8M)
- Video of the Simple Biped walking over hilly
terrain.

• Video 3 - (http://youtu.be/-ddQZMGZX5g)
- Video of the Simple Biped transitioning be-
tween walking and jumping gaits.
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