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Abstract

Systems that have sliding and intermittent contact
are said to have hybrid dynamics. These systems
have continuous modes (sliding, rotating, flight...)
that are connected with discrete transitions (collision,
lift-off...). Simulation of hybrid systems can be tricky,
and this report will cover a few subtitles that are en-
countered when simulating hybrid systems that are
associated with the contact mechanics of rigid bod-
ies.

1 Simulation Architecture

When simulating mechanical hybrid systems, there
are two fundamentally different architectures for the
simulator. We will call the first event-based simula-
tion and the second impulse-based simulation. Event-
based simulation is the traditional way to simulate a
hybrid system, and it directly uses the finite state ma-
chine structure of the hybrid system. Impulse-based
simulation is an approximation that is used for sys-
tems where the full finite state machine is too com-
plex to explicitly write out. The simulations in this
report exclusively use event-based simulation, since
their finite state machines are simple and I’m inter-
ested in high-accuracy results.

1.1 Event-Based Simulation

In an event-based simulation a full finite state ma-
chine must be written out for the system dynamics.
In each continuous state a set of differential equations
governs the continuous dynamics of the system. The
integration algorithm is typically a variable-step inte-
grator that uses root finding to determine the precise
instant in time when the state invariants or transition
guards switch. This results in an accurate simulation,
since both the continuous and discrete dynamics can
be calculated to near machine precision.

The major down-side of this type of simulation is
that for some mechanical systems, the full finite state

machine is too complicated to write down. For exam-
ple, suppose that you are trying to simulate a system
of 10 dice being thrown. Each die can contact the
ground at either one, two, or four points1, and then
every die and touch a few other dice as well, in arbi-
trary locations.

1.2 Impulse-Based Simulation

Impulse-based simulation was developed to deal with
systems with arbitrarily complex contact mechanics,
such as the dice example from the previous section.
It is used in most general dynamics engines, such as
Bullet and Open Dynamics Engine (ODE). Some peo-
ple also call impulse-based simulation time-stepping
simulation.

The key idea in impulse-based simulation is that
each rigid body2 is handled independently. The dy-
namics are written out such that all forces are ex-
pressed as impulses, given some fixed time-step. At
every time step, the impulsive contact forces be-
tween objects are solved as part of a large optimiza-
tion program. This optimization problems solves for
the unique solution to these three constraints, ap-
plied at every contact pair that is detected3. These
constraints form a linear complementarity problem
(LCP).

dn > 0 Contact seperation

Jt ≤ µJn Contact force in friction cone

dnJt = 0 Contact force when touching

1four contact points causes difficulties even for a single die
in isolation...

2Some algorithms have special algorithms for dealing with
linkages, such as a “Featherstone’s Algorithm” which is actu-
ally a collection of algorithms, published by Roy Featherstone
in his book Rigid Body Dynamics Algorithms [1].

3There is a whole field of research dedicated to determining
which points of which objects are in contact, but it is outside
the scope of this report.
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2 Bouncing Ball

One of the simplest hybrid systems is a bouncing
ball. There is one continuous phase of motion: (flight
through the air)

ẋ = v (1)

v̇ = −g (2)

and one discrete transition: (collision with the
ground)

v+ = −k · v− (3)

Simulation of this system will show that the ball sim-
ply bounces up and down, attaining less height on
each successive bounce (assuming a realistic value of
0 < k < 1).

2.1 Zeno’s Paradox

It seems that simulating such a simple system would
be trivial, but it turns out that you will quickly dis-
cover a problem. The problem is that the simple
model of a bouncing ball will experience an infinite
number of bounces in a finite amount of time. This
behavior is known as Zeno’s paradox, and it will typ-
ically break the simulator, if not handled properly.

Let’s look at why this happens. The analytic solu-
tion for bounce time, for the ball bouncing equations
given above is:

Ti = 2
vi
g

= 2
(kiv0)

g
(4)

Since this is a geometric series, it can readily be
shown that the time required for an infinite number
of bounces is given by Equation 5. Assuming that
the coefficient of restitution (k) is strictly less than
one, an infinite number of bounces will occur in a
finite time. As a computer attempts to run a sim-
ulation up to and through this critical time, it will
necessarily run into an error (such as the integration
time step going to machine precision, or the event de-
tection missing the collision, or just missing a bounce
entirely).

∞∑
i=0

Ti =
2v0
g

∞∑
i=0

ki =

(
2v0
g

)(
k

1− k

)
(5)

This particular issue of bouncing contact is com-
mon in simulations, and most simulation engines
treat it as a special case. One common way to do this
is to prescribe a minimum escape velocity; if the sep-
aration velocity is smaller than this threshold, then

the simulator will assume the the objects stay in con-
tact.

2.2 When event detection fails

A bouncing ball on flat ground is not very exciting,
but things get more interesting when it is bounc-
ing around on hilly terrain. Since the dynamics are
still fairly simple, this is an excellent place to use a
variable-step integration algorithm with event detec-
tion (as opposed to an impulse-based simulator).

Event detection works by evaluating an event vec-
tor at every grid point, and checking the sign of the
result. If there is a sign change, then an event occurs
and the simulator calls a root finding routine. In-
terestingly, if the dynamics are simple, but the event
function is complicated, this scheme will miss events.
This is because the variable-step integrator (Matlab’s
ode45 in the case of Figure 2.2) is trying to maximize
step size while meeting an accuracy constraint. Since
the dynamics are simple, it takes huge time steps,
which can miss rapid changes in the event function.

In the case of the ball bouncing over hilly terrain,
the height of the ball with respect to the ground (the
event function) is changing much more rapidly than
the absolute height of the ball (the state dynamics).
This allows the ball to tunnel through a steep hill, as
shown in Figure 2.2. One way to solve this problem
is to put a limit on the maximum step size of the
integrator, such that it is unlikely to miss a collision.
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Figure 1: A bouncing ball over hilly terrain. This
figure illustrates a special case where matlab’s built in
event detection fails due to a large step-size in ode45.

3 Sliding is not optional

In many simple simulations, it is tempting to assume
a ‘no-slip’ boundary condition. Under this (bad) as-
sumption, the contact point can either be pinned or
free, and the transitions between modes are based on
the normal force and separation distance. A simu-
lation using the no-slip boundary condition will ei-
ther use negative contact forces or allow the colliding
object to penetrate, depending on the type of error.
The solution to this problem is to assume some sort
of contact model that allows for sliding.

3.1 The Toppling Pencil

In the 1980’s, Tad McGeer published a paper [4]
which showed that a simulation of a pencil toppling
from rest produce non-physical results if you make
this ‘no-slip’ assumption. His simulations showed the
pencil slowly falling over, and then at some critical
angle, the pencil would begin to accelerate through
the floor. Usually one would assume that this was a
bug in the code, but in this case the code was correct,
and the problem was due to the no-slip assumption.

As the pencil topples from rest, there is some criti-
cal angle where the normal force goes to zero. In gen-
eral, the tangential force on the contact is non-zero at

FORCE

ACC
FORCE

ACC

Figure 2: Acceleration of the contact point of a thin
rod. The solid blue arrow shows an applied force, and
the red dashed arrow shows the resulting acceleration.

this point, and in reality the pencil would slide in re-
sponse to this force. Since McGeer neglected sliding,
his simulator set the contact mode to free. Instead of
the contact point remaining above the ground, it in-
stead began to accelerate through the ground. Why?

Let’s consider the instantaneous acceleration of the
contact point when the pin-constraint is removed.
Before the constraint is removed, the contact point
is stationary, but has a non-zero external force ap-
plied to it. This implies that there are some inertial
forces that are attempting to accelerate this point,
and that these forces precisely balance the external
force. When the constraint is removed, so are these
external forces, and thus the contact point accelerates
due to these inertial forces.

One way to understand which direction the con-
tact point accelerates is by understanding the mass
matrix of the contact point. This matrix describes
how a point on a rigid body moves in response to a
force applied at that point. In general, the direction
of acceleration is not aligned with the direction of
the force. Figure 2 shows a visualization of the mass
matrix, where the length of the dark line shows the
effective mass in that direction. The left side of the
figure shows the case observed in the toppling pen-
cil example: The change in contact forces is directed
to the right, and the pencil is tipped to the right.
The resulting inertial effects act to swing the contact
point into the ground.

3.2 No-Slip 6= Infinite Friction

One reason that people give for making the ‘no-slip’
assumption is that it is “the limiting case as the coef-
ficient of friction goes to infinity”. This is completely
false, as is demonstrated by the following example.

Consider a simple example of sliding: a stick being
dragged with constant velocity as shown in Figure
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Figure 3: A stick that is being dragged along the
ground with constant velocity.

3. Assume that the contact forces are governed by
Coulomb friction with coefficient µ. Since the ve-
locity of the stick is constant, we can treat this as a
statics problem. It can be shown that horizontal force
(H) required to maintain constant speed is given by
Equation 6

H(θ) =
Wµ cos(θ)

2 cos(θ) + µ sin(θ)
(6)

Taking the limit as µ→∞ shows that the horizontal
force remains finite. It can also be shown that the
normal force (N) at the contact goes to zero as µ→
∞. These trends are shown numerically in Figure 4

lim
µ→∞

H(θ) =
W

tan(θ)
(7)

3.3 Contact Finite State Machine

The ‘correct’ way to deal with contacts is to allow for
three different contact modes at each contact: free,
sliding, and pinned. Each of these contact modes can
be expressed as a constraint at that contact point:

• free - The normal force is zero

• sliding - The tangential force is such that the
contact point travels along the surface

• pinned - The tangential force cannot do posi-
tive work on the system.

In addition to these constraints, there are also a set
of transition conditions that link each of these con-
tinuous modes. Figure 5 shows an example of a fi-
nite state machine constructed from these states and
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Figure 4: Contact force limits as a function of µ for
a stick dragging with constant velocity.

Hinge

|θ| < θc

~F · n̂ > 0

Flight

~r /∈ Υ

Slide

~̇r · ~F ≤ 0

~̈r · n̂
> 0

|φ| <
φc

~̇r = 0

|θ| = θc

~̇r = 0

|~F | = 0

~̈r · n̂ > 0
|φ| = φc

Figure 5: Finite State Machine for generalized rigid
body contact

transitions. Notice that each state has different equa-
tions of motion. This is fine for a single contact, but
things get very complicated if you have multiple con-
tacts. Consider robot model with two contact points
- now the finite state machine has nine states instead
of three.

4 Toppling Stick

This first part of this section is an overview of how
to create a finite-state-machine-based simulator for
a two-dimensional rigid stick. The remainder of the
section discusses some simulation results that investi-
gate the conditions necessary for slipping as the pen-
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Figure 6: Free body diagram for both phases of mo-
tion.

cil topples from rest.

4.1 Peinlevé Paradox

Peinlevé’s Paradox occurs when a rigid body is sliding
along a surface while tipped backwards. Under these
conditions it is possible for a jamming motion to oc-
cur where the contact forces cause the body to rotate
upwards, which in turn increases the contact force.
Under these special conditions the contact forces and
accelerations to become infinite in a finite amount of
time. This phenomena is well studied and is thor-
oughly discussed in references: [5] [2] [3]. It is this
effect that allows dashed lines to be easily and rapidly
drawn on a chalk board. I mention it here as an in-
teresting side note, as remainder of the section are
not related to this paradox.

4.2 Model for Continuous Dynamics

This section discusses the general model that is
shared across all contact modes. The hinge and slide
modes will be discussed in the following sections. The
stick is modeled as a rigid body with:

M = mass

IG = moment of inertia about center of mass (CoM)

L = distance between contact point and CoM

Forces acting on the stick:

Mg = body force due to gravity

H = horizontal contact force

V = vertical contact force

The stick has two degrees of freedom (neglecting
flight phase):

θ = angle of the stick

x = horizontal position of contact point

The equations of motion are derived using two frames
of reference - an inertial frame and a body frame:

î = positive horizontal direction

ĵ = positive vertical direction

k̂ ≡ î× ĵ
êr = direction along stick, pointing away from contact

êθ = direction transverse to êr

Define rotating reference frame and derivatives:{
êr = − sin(θ)̂i+ cos(θ)ĵ

êθ = − cos(θ)̂i− sin(θ)ĵ{
˙̂er = θ̇êθ

˙̂eθ = −θ̇êr{
¨̂er = θ̈êθ − θ̇2êr
¨̂eθ = −θ̈êr − θ̇2 ˆ̇eθ

4.3 Hinge Phase Derivation

In the Hinge phase of motion the contact point is fixed
at the origin. The system is constrained to rotate
about this point, thus giving the system one degree
of freedom. The following constraints are used to
determine when this phase is no longer valid. They
correspond to transitions to falling, flight, and sliding
respectively.

−π/2 < θ < π/2 stick above ground

V ≥ 0 positive normal contact force

−µV ≤ H ≤ µV coulomb friction
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Define position vector from the contact point to the
CoM:

~r = Lêr

~̇r = L ˙̂er

~̈r = L¨̂er

Conservation of angular momentum (rate) about the
contact point:∑

M/O = ~̇H/O

~r × (−Mgĵ) = IGθ̈k̂ + ~r × (M~̈r)

Conservation of linear momentum (rate):∑
F = ~̇L

Hî+ V ĵ −Mgĵ = M~̈r

I used Matlab’s symbolic toolbox to directly solve
these equations for the angular acceleration and con-
tact forces. These symbolic expressions, along with
expressions for the kinematics and energy, were then
automatically written to functions to be used by the
simulation.

4.4 Slide Phase Derivation

In the Slide phase of motion, the contact points is
constrained to move along horizontal (̂i) axis and the
contact forces obey coulomb friction. The following
constraints are monitored during simulation. A tran-
sition is triggered when they are no longer satisfied.

−π/2 < θ < π/2 stick above the ground

V ≥ 0 positive normal contact force

|ẋ| ≤ 0 direction cannot change

|H| = µV Coulomb friction

Define position vector from the origin to the CoM:

~r = xî+ Lêr

~̇r = ẋî+ L ˙̂er

~̈r = ẍî+ L¨̂er

Conservation of angular momentum (rate) about the
origin: ∑

M/O = ~̇H/O

~r × (−Mgĵ) + (xî)× (V ĵ) = IGθ̈k̂ + ~r × (M~̈r)

Conservation of linear momentum (rate):

∑
F = ~̇L

Hî+ V ĵ −Mgĵ = M~̈r

I used Matlab’s symbolic toolbox to directly solve
these equations for the angular acceleration and con-
tact forces. These symbolic expressions, along with
expressions for the kinematics and energy, were then
automatically written to functions to be used by the
simulation.

4.5 Simulation

I wrote a simulation in matlab that was based on a
finite state machine (FSM) architecture. Each con-
tinuous phase of motion was integrated using ODE45
in Matlab, with built-in event detection to check that
the constraints were satisfied. At the start of the
simulation, it determines which phase of motion the
system is in, and then integrates the corresponding
equations of motion until a constraint is violated. At
this point, the system runs the FSM to determine
which phase of motion to transition to. Flight phase
was included for completeness, but is never used in
these experiments.

4.6 Experiment - Pencil Toppling
from Rest

The goal of the experiment is to better understand
what happens when the contact forces on an object go
to zero. In this case, every experiment starts with a
stick toppling from rest. The coefficient of friction at
the contact and moment of inertia of the stick a both
adjusted over a wide range of values. For every trial
the slip distance and critical angle before slipping are
recorded.

The parameters in the problem were scaled to be
dimensionless: {M = 1, g = 1, L = 1}. Additionally,
the moment of inertia (IG) is scaled such that IG = 0
corresponds to a point mass at the CoM and IG = 1
corresponds to half the mass at each end of a stick
with length = 2L. As a point of reference, IG = 1/3
corresponds to a slender rod.

In order for the stick to fall over in simulation,
it must be given an initial perturbation. To keep
results consistent, the initial energy of the system is
held constant across all trials. This prescribes a fixed
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relationship between the initial angle and rate:

E(θ, ω) ≡MgL cos(θ) +
1

2
(ML2 + IG)ω2 (8)

E(θ0, ω0) ≡ E(0, 0) = MgL (9)

Solving for initial angular rate yields:

ω0(θ0) =

√
2MgL(1− cos(θ0))

ML2 + IG
(10)

It turns out that the results of the experiment are
sensitive to these initial conditions. For example, if
you assume that the system has a small initial an-
gle but no initial velocity, then you will get slightly
different results.

4.7 Toppling Point Mass with Infinite
Friction

With infinite friction at the contact, the stick will
start to slip when the vertical component of the con-
tact forces goes to zero. Assuming the initial condi-
tions from Equation 10, the vertical reaction force is
given by:

V (θ) =
Mg(IG − 2mL2 cos(θ) + 3ML2 cos2(θ))

IG +ML2

∣∣∣∣
IG→0

=Mg cos(θ) (3 cos(θ)− 2)

Solving for the non-trivial root of this equation yields
the critical value for θ at which slipping occurs:

θc = arccos(2/3) ≈ 48.189685◦ (11)

A little bit of simple algebra yields a nice expression
for the angular velocity at this critical angle:

ωc =

√
2g

3L
(12)

While slipping with infinite friction the vertical com-
ponent of the contact force is zero by definition. The
horizontal component is given by:

H = 2IG

(
g − Lω2 cos(θ)

L2 sin(2θ)

) ∣∣∣∣
IG→0

= 0 (13)

Since the only non-zero force acting on the stick (in
this special case) is its own weight, the center of mass
(CoM) will follow a parabolic trajectory. The initial
position and velocity of the CoM are given by:

~rc = 〈−L sin(θc), L cos(θc)〉 (14)

~̇rc = 〈−Lωc cos(θc),−Lωc sin(θc)〉 (15)

The final distance (d∗) reached by the CoM at the
time of impact (t∗) can be found by solving the fol-
lowing system:

0 =

(
L cos(θc)

)
+

(
− Lωc sin(θc)

)
t∗ +

1

2

(
− g
)

(t∗)2

(16)

d∗ =

(
− L sin(θc)

)
+

(
− Lωc cos(θc)

)
t∗ (17)

Since the CoM is falling/sliding in the negative direc-
tion, we need to add L to get the distance that the
contact point slipped:

dslip = d∗ + L (18)

After doing quite a bit of algebra and a letting g = 1
and L = 1 it can be shown that the slip distance is:

dslip =

(
1− 4

27

√
23− 5

27

√
5

)
≈ −0.124580 (19)

4.8 Results - Pencil Toppling from
Rest - General Case

For intermediate values of µ there is a regime in which
the stick slips in both directions. In these cases, the
stick first slides backwards, then rotates about a fixed
point, and then slides forwards until ultimately strik-
ing the ground.

Sticks with low IG slide for all values of µ. This
includes the limit as the coefficient of friction goes to
infinity.

Sticks with large IG have a critical value of µ for
which they do not slide.
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Figure 7: Shows sign conventions for slipping for-
wards and backwards
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Figure 8: Positive and negative slip as a function of
coefficient of friction and moment of inertia. Notice
that the stick slides backwards with low friction and
forwards for high friction. The slip distance is smaller
for large sticks with a large moment of inertia.
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Figure 9: Critical angle before slipping as a func-
tion of coefficient of friction and moment of inertia.
Notice that as the moment of inertia becomes small
(like a point mass) the critical slip angle asymptoti-
cally approaches that of a ball bearing rolling off of a
sphere.
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Figure 10: Shows which direction the stick will slip
first. Notice that there is a small region where no
sliding occurs, but that most of the region is domi-
nated by either forwards or backwards sliding. Notice
that for all reasonable values of friction (µ < 1) the
stick slips backwards first.
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