Non-linear robust control for inverted-pendulum 2D walking

Matthew Kelly! and Andy Ruina?

Abstract— We present an approach to high-level control for
bipedal walking exemplified with a 2D point-mass inextensible-
legs inverted-pendulum model. Balance control authority here
is only from step position and trailing-leg push-off, both of
which are bounded to reflect actuator limits. The controller is
defined implicitly as the solution of an optimization problem.
The optimization robustly avoids falling for given bounded
disturbances and errors and, given that, minimizes the number
of steps to reach a given target speed. The optimization can be
computed in advance and stored for interpolated real-time use
online. The general form of the resulting optimized controller
suggests a few simple principles for regulating walking speed:
1) The robot should take bigger steps when speeding up and
should also take bigger steps when slowing down 2) push-off
is useful for regulating small changes in speed, but it is fully
saturated or inactive for larger changes in speed. While the
numerically optimized model is simple, the approach should
be applicable to, and we plan to use it for, control of bipedal
robots in 3D with many degrees of freedom.

I. INTRODUCTION

In the long run we would like to explain, and robotically
reproduce, the efficiency, speed and versatility of human
bipedal locomotion in various terrains. Here we work towards
this goal by designing a controller for walking, focusing on
the ability to avoid falling in level walking, considering vari-
ous disturbances. Bipedal locomotion violates many common
assumptions in basic classical control: it is nonlinear, non-
holonomic [1], has discontinuities, and changes governing
equations during the motion. Hence there is no generally-
accepted classical-controls approach to stabilizing walking.
Here we pursue a hierarchical controller strategy for walking
control.

Most balance controllers use some sort of hierarchical
structure, factoring the control problem for walking into two
parts: a high-level controller concerned with overall robot
position and balance, and a low-level controller that deals
with the many internal degrees of freedom. The high-level
controller may specify foot placement, leg length, and ground
reaction forces and torques to achieve balance; while the low
level controller determines individual motor commands to
realize these sub-goals.

A few examples of robots that use a hierarchical approach
include Atlas [2], Asimo [3], MABEL [4], and the Cornell
Ranger [5], all of which use a balance controller based on
one or another simple low-dimensional model. For instance,

*This work is supported by the National Science Foundation (fellow ID:
2011116308) and the National Robotics Initiative (grant number 1317981)

IMatthew Kelly is a PhD student in Mechanical Engineering, Cornell
University, Ithaca NY 14850, USA mpk72@cornell.edu

2Andy Ruina is a Professor of Mechanical Engineering, Cornell Univer-
sity, Ithaca NY 14850, USA ruina@cornell.edu

i
stance leg —_ L

_—swing leg

stance foot — _swing foot
/

Fig. 1. Point-mass walking model. All mass is concentrated at a point at
the hip. The legs are mass-less. There are two controls: The relative angle
of the legs at heel-strike, and the size of the push-off impulse by the trailing
leg just before heel-strike. Uncertainties in sensing, model, and actuation,
as well as actuator limits on push-off impulse and step length, are discussed
in the text.

the capture point controller [6]-[9] uses the linear inverted
pendulum (LIP) model to plan future foot step locations and
a trajectory for the center of mass. These high-level com-
mands are then realized by giving commands to individual
motors based on inverse kinematics and dynamics of a full
high-dimensional model of the robot.

Although these simple models are primarily used to make
the locomotion balance problem tractable, they also seem to
be genuinely good models for balance control [10]. Because
of their utility, however motivated, most successful simple
models are based on a point mass at or near the hip, light or
mass-less legs, and actuation to control the time and location
of foot falls and the ground reaction force. The models tend
(sensibly, we think) to neglect the effects on balance of upper
body motions and the details of leg swing between steps.

Within the class of point-mass models just mentioned,
there are still choices. One common choice is to use the
‘linear inverted-pendulum’ (LIP) model, in which the height
of the point mass is held constant (e.g. with ‘capture point’
and ‘zero moment point’ control). Here, however, we use
an ‘inverted-pendulum’ (IP) model which has constant leg
length instead of constant hip height. The IP model has
not been as frequently used for walking balance control
as the LIP model, in part because of the mathematical
simplifications of the LIP (e.g. [11]).

We use the IP model for control because it uses en-
ergy more effectively than the LIP model. More precisely,
Srinivasan and Ruina [12], [13] used numerical trajectory
optimization to find positive-work minimizing gaits on a
general point-mass walker and found that the energy-minimal
walking gait used constant-length legs: the IP model of
walking. In this model the stance leg length remains constant,
and the push-off at the end of the stance phase is (at least
approximately) impulsive. This is a powered version of the

wo w_ W wy
S —a >
L. -
I
swing |(/) push-off | swing
down 1 then | up
| collision |
| |
! I
4 7/
mid-stance pf push-off collision \ mid-stance

Fig. 2. One walking step. A step starts when the stance leg passes
clockwise through the vertical orientation. The hip then falls to the right.
Just before the swing leg hits the ground there is push-off from the ground
on the stance leg. Immediately after push-off, the swing leg hits the ground
and becomes the stance leg. The former stance leg leaves the ground and
the new stance leg swings up to the start of the next step. In the leftmost
and rightmost pictures, the angle of the swing leg is arbitrary (because it is
fully controlled).

so-called ‘Simplest Walker’ [14]. The energy effectiveness of
impulsive push-off and straight leg walking is also discussed
in Kuo [15] for a similar model. Because of the IP’s good
energetics, it is the basis of our walking robots. In the design
of the controller here, however, we do not explicitly consider
energy, focusing instead on robustness to disturbances and
quick return to a nominal gait.

Zaytsev [16] has introduced a simple walking controller
for this IP model, based on finding simple control laws
that maximize the distance from failure boundaries. Here,
we extend Zaytsev’s work by optimizing an arbitrary-form
controller that is robust to disturbances and also stable.
Additionally, the design process here is fast enough that it
can be repeated to stabilize a range of speeds thus generating
a full feedback policy for a range of walking-speed goals.
Despite a difference of methods with Zaytsev, there are
common results (discussed below). This may indicate that
we are extracting features that are necessary aspects of
any robust walking balance controller that is reasonably
constrained by actuator and sensor limits.

II. WALKING MODEL

Our model consists of a point-mass hip on mass-less in-
extensible legs (Fig. 1). The model has two control inputs
at each step: the angle of the stance leg (¢) at heel-strike,
and the push-off impulse (p) that occurs immediately before
heel-strike.

A step comprises four distinct phases, starting from a mid-
stance (more or less a Poincaré Section) where the stance
leg is vertical and rotating clockwise . These phases are
illustrated in Fig. 2: a swing-down to the step angle (¢);
followed by an impulsive push-off (p); then heel-strike and
leg-switch; and finally a swing-up to mid-stance. Through-
out the paper we measure walking speed in the various
phases of the gait by the dimensionless (divide by \/gW)
angular velocity w of the stance leg.

A. Actuation

The step length is determined by the step angle: step length
= 20sin ¢. We neglect swing-leg inertia: its motion does not

affect the motion of the stance leg. The step angle is bounded
(constrained) to mimic the joint limits of a real robot.

The impulsive push-off is meant to be a proxy for the
energy injected into the walking motion by the extension of
the trailing leg (ankle extension). The bounds on the push-
off are a proxy for the maximum power available for leg
extension.

B. Equations of Motion

The model is a simple inverted pendulum, but with im-
pulses and resets at each step. The parameters m, g, and ¢
represent the robot’s mass, gravitational acceleration, and leg
length respectively. The control variables ¢ and p represent
the step angle and push-off impulse respectively.

The step starts with the stance leg vertical and rotating
with speed (wy) towards heel-strike. The angular rotation
rate immediately before push-off can be obtained via con-
servation of energy:

W = \/(ww? - 2790 —~ cos). (1)

Next, a push-off impulse is applied to the point-mass along
the stance leg, changing the hip’s velocity vector. After that,
the swing leg becomes the new stance leg as it collides with
the ground, exerting another impulse on the point-mass hip.
The composition of these two collisions, governed by angular
momentum balance about the new stance foot, yields the
rotational speed of the new stance leg (w™),

wt = (w”) (cos® ¢ —

After the two collisions, the stance leg swings up to the next
mid-stance, again ruled by conservation of energy,

Wk+1 = \/(W+)2 -

C. Feasibility conditions

sin® ¢) + 2p cospsing. (2)
ml

27‘(](1 — cos Q). 3)

A walking step is considered successful (i.e. the robot did
not fail) if two conditions are met: first, the stance leg is
always in compression (this is also a no-flight condition), and
second, the speed after the heel-strike must be sufficient to
continue on to the next step without falling over backwards.
These conditions are expressed with the four inequality
constraints:

g
7 cos ¢ 4)

) cos psing — p (cos® ¢ —sin® ¢) 20 (5)

\/ l—cosgzﬁ <wt <,/7cos (6)

The first inequality (4) is a restriction on the speed before the
push-off impulse. The second inequality (5) is a restriction
on the collision impulse - the collision cannot pull the walker
towards the ground. The final inequalities (6) are restrictions
on the lower and upper bounds on the speed after collision,
preventing both falling over backwards and flight.

w <

0 < (2ml)(w

D. Disturbance Model

In this paper we claim that the controller is robust to errors
in modeling (7), actuation (8)(9), and sensing (10). Each type
of error is modeled as a perturbation:

=0+ 6y, |0¢] < Ay (7
pi=p+p, ‘5p| <4, ®)
¢ = ¢+ by, 66| < Ay)
Wk 1= Wk + 0y, 10,] < Ay (10)

We represent the vector of disturbances:

4= [5£;5p75¢;5w]7 0eD (11D
The set of disturbances D may be thought of as a four-
dimensional hyper-rectangle. We define a set of maximal
disturbances Dy, ,x that correspond to the 24 corners!of this

hyper-rectangle.

Diax = {[£A¢, £A,, £A4, £A]} (12)

We use the full set of disturbances (D) for doing controller
verification and testing, and the smaller sub-set of maximal
disturbances (Dy,ax) for controller design and optimization.

III. CONTROLLER DESIGN

Our controller is a function that maps the estimated mid-
stance’ speed (@) to a desired push-off impulse (p) and step
angle (¢). When implemented on a real robot, the push-off
impulse is related to how much energy the extension of the
trailing leg adds to the robot before the next step. The step
angle corresponds to a target foot-placement location on the
ground.

{p. ¢} = K (o) (13)

The controller K aims to stabilize the walking gait to a
user-specified target speed (w*). Here, we outline the design
process for a single given target speed. The method is then
repeated to find controllers for a variety of speeds (see results
section).

We discretize the range of possible input mid-stance
speeds Q7 = [0, wmax]- The output of the controller at each
of these grid-points is computed by solving an optimization
problem: p and ¢ are the controls that stabilize the mid-
stance speed (W~ — w™*) in the fewest number of steps while
preventing falls despite all possible bounded disturbances. At
run-time the controller is evaluated via linear interpolation
over this grid.

We express the design requirements (stability and ro-
bustness) as constraints in the optimization problem that
defines the controller. Thus, if the optimization returns a
feasible solution, then the controller will satisfy the design
requirements precisely for every grid point in the controller.

For example, [+A,, +Ap, —Ay, +Au] € Dmax
2Mid-stance is the point during a step when the stance leg is vertical.

A. Asymptotic Stability

We want the controller to bring the robot towards the
desired walking speed (w*), starting from any mid-stance
speed wy, drawn from the set of allowed initial speeds €2;.
This goal can be expressed as the need for reduction at each
step k of a discrete Lyapunov function ('), with V' defined
as the mid-stance speed-error squared:

V(wg) = (w* —wg)? (14)

The controller is asymptotically stable if the Lyapunov
function decreases at each successive step:

V(wky1) < V(wg) Vwr € Qp (15)

This condition (15) is imposed as a constraint in the
controller design, thus any controller will be asymptotically
stable, in the absence of disturbances.

B. Robust Stability

Asymptotic stability in the absence of disturbances is
good, but we would also like to show that the controller
is still stable given any disturbance § € D. In this case, it is
not possible to show convergence to a point, but we can (and
do) show convergence to some finite set) that contains the
target mid-stance speed.

For this aspect of the controller, we separate the controller
design and verification. For the controller design we find the
controls that minimize the Lyapunov function (14) over the
finite the set of maximal disturbances Dy, .. The set Diyax
is a proxy for the disturbance that precisely maximizes the
Lyapunov function. Note that w; is the next mid-stance speed,
subject to disturbance §;. The controls (p, ¢) and initial state
(wg) are held constant over each step in the sum:

)= 3 W —w)

5i €Dmax

(16)

Once the controller has been designed, we do stability
verification by running an additional optimization to find the
precise disturbance that maximizes the Lyapunov function at
the next step Vwy € €. The result of this optimization is
the size of the goal set ¢ that satisfies (17) and (18).

V(wk+1) < V(wk)
YVweQ—Qy V6D (17)

V(wkt1) < V(wk)
Vwarl €Qa Yw, €6l VoeD (18)

The first of these equations (17) shows that the controller
is asymptotically stable to (), even in the presence of
disturbances. The second equation (18) shows that once the
walking speed is inside the boundary of the goal set (0Q2¢),
that there is no disturbance that can push it out.

C. Fall Prevention

In addition to reaching the target walking speed, we
would like that any execution of the controller avoid falling.
This is accomplished by adding the constraints (1)-(3) to
the optimization problem, and requiring that they hold for
Véd € Dmax-

D. Implementation

The constraints for the optimization problem require solv-
ing total of 17 simulated walking steps: one nominal step
(without perturbation), and 2% perturbed steps (one for each
disturbance in Di,ax). All of these simulated steps start from
the same initial state and use the same control.

For each of these simulated walking steps, the intermediate
speeds w™,w™ and next step speed wy, ;1 are passed as deci-
sion variables in the optimization. This allows the dynamics
(1)—(3) and no-falling constraints (4)—(6) to be expressed as
simple non-linear functions of the decision variables. The
asymptotic stability condition (15) and objective function
(16) are both quadratic in the decision variables. Posing
each optimization problem in this way makes it easy to
compute gradients and solve quickly using standard non-
linear constrained optimization packages.

IV. RESULTS

In this section we present an optimal controller, as de-
signed using the framework presented in this paper.

A. Design Parameters

All parameters in this paper (Table I) have values that
roughly match the Cornell Ranger [17].

B. Optimization

We used Matlab’s [18] FMINCON optimization software
to solve all optimization problems presented here.

The optimization problem that defines the controller is
evaluated for each point on a grid. The results here were
computed using a grid of 50 points. Similar results are
obtained for grids with fewer points, although there is a slight
degradation in performance due to interpolation errors at run-
time.

The results presented here took approximately 62 seconds?
to generate in Matlab. Three controllers were generated

TABLE I

PARAMETERS
Symbol Name Value
m mass 9.91 kg
g gravity 9.81 m/s?
4 leg length 0.96 m
Pmax max push-off impulse 12.2 kgm/s
Gmax max stance angle 30° = 0.52 rad
Wmax max mid-stance speed 2.56 rad/s
Ay leg length error bound +0.05¢
Ap push-off error bound + 0.05 pmax
Ay step length error bound + 0.05 ¢pmax
Ay mid-stance speed error bound £ 0.05 wmax

(including verification), with 50 grid-points each, giving a
average time of 0.4 seconds per grid-point.

C. Optimized Push-Off Controller

The optimized push-off controller is shown in Fig. 3. It
has a relatively simple form: big push-off to increase speed,
and no push-off to slow down. For fast walking, the push-off
is saturated at the maximum value for much of the domain.

1_

target = slow walk
0.5} s

J———no push-off
0 0.25 0.5 0.75 1

target =
medium walk

0.75 1

push-off impulse: (p/pmax)

W__—max push-off

0.5¢

target = fast waIk-\

6 0.é5 0:5
walking speed: (wk/Wmax)

Fig. 3. Optimized Push-Off Controller. This figure shows the optimal
push-off controller for three different walking speeds. The general trend is
simple: too fast — no push-off, too slow — big push-off. Notice that the
actuation is saturated for much of the domain for the fast controller.

D. Optimized Step-Length Controller

The optimized step-length controller is shown in Fig. 4.
The general trend is that you should take small steps when
you are near the target speed, and bigger steps otherwise. In
the absence of push-off (p = 0), taking bigger steps increases
the energy lost due to collision, and will slow the walking
gait. If the push-off is non-zero, then it is scaled by a term
that increases with the step angle. In effect, taking bigger
steps allows the push-off impulse to be more effective. This
explains the general trend: if a large push-off is used, then
that term dominates the collision losses, and the walking
gait speeds up; if a small push-off is used, then the collision
losses dominate and the walker slows.

E. Stability and Robustness

Given the optimal controller shown in Figs. 3 and 4,
it is possible to compute the closed-loop dynamics of the
system, mapping the mid-stance speed from one step to the
next. Figure 5 shows this so-called one-step map for an
intermediate speed walking gait. The horizontal axis shows

3Processor: Intel Core i5-3570K @ 3.40GHz x 4

/target = slow

0.5
]
Ok ! . . .
0 |0.25| 0.5 0.75 1
1r _/targeF =
! medium

target = fast :
\:

| kbig steps

o
ol

0.25 0.75 1

step angle: (¢/dmax)

0.5

small steps ——_3,\

. . !
0 0.25 0.5 |0.75| 1

walking speed: (wg/wmax)

Fig. 4. Optimized Step-Length Controller. This figure shows the optimal
step-length controller, for three different walking speeds. The general
strategy is to use small steps for the nominal walking speed, and take larger
steps otherwise. The slight corner in the slow- and medium-speed walking
controllers for high speeds is cause by the no flight constraint (4).

the mid-stance speed at step k, and the vertical axis shows
the mid-stance speed the next step (k 4+ 1). Any given point
on the horizontal axis maps to a set of points on the vertical
axis, corresponding to the set of reachable speeds given any
allowed disturbance.

The purpose of this figure is to visualize the stability of the
controller. The diagonal dashed lines show the points where
the Lyapunov function (14) is unchanged from one step to
the next. The entire horizontal axis is the set of initial speeds
Q;, and there is a thin vertical shaded region that shows the
goal set {)¢. For initial speeds that are outside of the goal
set, the Lyapunov function is always decreasing from one
step to the next. For initial speeds inside the goal set, the
Lyapunov function (error squared) might increase, but the
next step speed will never leave the goal set.

In the absence of disturbances the controller rejects nearly
all speed error in a single step, as shown by the nearly
horizontal line labeled no disturbance. In the presence of
disturbances the controller is still quite stable, reaching the
goal set in two or three steps even with the worst possible
disturbances.

FE Simulation Test

As one final check, we simulated the closed loop system
for a total of 10° steps, where the robot was subject to
random disturbances, uniformly drawn from D*. We ran 103
simulations, each consisting of 10% steps and starting from
a randomly chosen initial condition uniformly drawn from
Qr. In all cases the mid-stance speed stabilized to the target
speed within a few steps, and the mid-stance speed remained

1 N K
S ¢
S ’
N N N 7
NG e
\\{x 4,/
< V4
0.75} RSEN A
target 7 o
—targe N y
? & N2
4
max disturbance \\ e
1 X o disturBane

— 73

4
max disturbance

, RS Set of all
’ ~ .
, . possible
.25¢ ’ Qg steps
0.25 ,*" Goal < A P
e Set S
7 RN

Y

.

’
¢+ guaranteed guaranteed N

step k + 1 walking speed: (wk+1/Wmax)
B
[6)]

+ error reduction error reduction
0%—‘
0 0.25 0.75 1

step k walking speed: (wg/wWmax)

Fig. 5. One-step speed map. This figure shows the closed-loop dynamics
for the medium-speed (w* = 0.5 wmax) Walking controller. The horizontal
axis gives the mid-stance speed for step k, and the vertical axis gives the
mid-stance speed for step k + 1 that is achieved by the robust controller.
The horizontal shaded region show all possible steps that occur. The
no disturbance line shows the behavior of the controller in the absence
of disturbances. The boundary of the shaded region, marked with max
disturbance, shows maximum possible speed error at the next step due to
a disturbance. The dashed lines show the points where the speed error is
unchanged from one step to the next. Notice that for most of the domain
of the controller, there is a large reduction in error from one step to
the next, despite disturbances. For example, if wy = 0.75wmax, then
Wrt1 € [0.4 wmax, 0.6 wmax]. If there were no disturbances, then Wh+1
would be 0.51 wmax. The vertical shaded region shows the goal set Q¢
that satisfies (17) and (18).

within the goal set (£2g) on all subsequent steps. That is,
despite the disturbances applied at each step, the controller
was able to prevent falls in all cases.

V. DISCUSSION

We have presented a controller for a simple model of
walking that is maximally robust, by our measures. This con-
troller can regulate a desired walking speed while preventing
falls due to reasonable errors in the model, sensors, and
actuation. The controller avoids falls for all reasonable values
of disturbed and desired walking speeds. That is, assuming
we consider only forwards walking, the basin of attraction
of this controller is maximal with the given noise.

The approach here was inspired by robust control: the
controller should be robust (never fail) for any bounded
disturbance, and the walking speed should converge to
some goal set. The controller was designed using non-linear

4The perturbation on leg length was randomly drawn once at the begin-
ning of each of the 103 simulations, and then held constant for all 103 steps
in each simulation. This was done to more closely mimic a robot that had
a modeling error. The other disturbances were randomly drawn on every
single step.

optimization, where these robustness and stability require-
ments were enforced as constraints on the optimization.
Although the resulting controller is correct by construction,
we demonstrated the performance of the controller using
massive simulation.

We designed a controller that could robustly stabilize slow,
moderate, and fast walking gaits for the inverted pendulum
model of walking, using parameters based on our robot, the
Cornell Ranger. An interesting and perhaps general result is
this: To increase speed, the controller takes large steps and
uses large push-off. To maintain speed, it takes small steps
and uses intermediate values of push-off. To decrease speed,
the controller takes large steps with no push-off. This general
trend is observed across all walking speeds. Although only
implemented here on a simple 2D model, we believe the
approach will be useful for a more complex robot in 3D.

VI. FUTURE WORK

We plan to develop this controller for use on a 2D robot,
Cornell Ranger, and then later, for a 3-D robot with many
degrees of freedom.

One limitation of our model is that we restricted it to
forward motion without a flight phase. These restrictions
make calculations easier, but are overly conservative with
respect to the real limits on falling; a small flight phase, or
a step backwards does not necessarily lead to a fall. With
a more general model that allowed some flight and back-
stepping, we could make a robust controller with even larger
allowed bounds on the various disturbances.

The extension from a 2-D robot to a 3-D robot will raise
the mid stance state from 1 number to 2 (or 3 if heading
is to be stabilized). The actuation will go from 2 controls
to 3 (push off, step length and steering angle). However, the
addition of more internal degrees of freedom does not change
the form of this high-level controller. Rather the output of a
controller of the type developed here, will serve as input to
the micro-management of the various joints so as to achieve
the desired push off and foot placement.

ACKNOWLEDGMENT

This research is supported by the National Science Foun-
dation: Graduate Research Fellowship Program (fellow ID:
2011116308) and the National Robotics Initiative (grant
number: 1317981).

Thanks to Petr Zaytzev for his insights about the nature
of the control laws for the simplest walker, and to Anoop
Grewal for his work on the simplest walker model.

REFERENCES

[11 A. Ruina, “Nonholonomic stability aspects of piecewise holonomic
systems,” Reports on Mathematical Physics, vol. 42, no. 1-2, pp. 91—
100, 1998.

[2] S. Kuindersma, F. Permenter, and R. Tedrake, “An Efficiently Solvable
Quadratic Program for Stabilizing Dynamic Locomotion,” in Interna-
tional Conference on Robotics and Automation, 2014.

[3] P. R. D. Honda, “Asimo Technical Report, Tech. Rep. September,
2007.

[4]

[5]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, “A
Compliant Hybrid Zero Dynamics Controller for Stable, Efficient
and Fast Bipedal Walking on MABEL,” The International Journal of
Robotics Research, vol. 30, no. 9, pp. 1170-1193, Sept. 2010. [Online].
Available: http://ijr.sagepub.com/cgi/doi/10.1177/0278364910379882
P. a. Bhounsule, J. Cortell, a. Grewal, B. Hendriksen, J. G. D.
Karssen, C. Paul, and a. Ruina, “Low-bandwidth reflex-based
control for lower power walking: 65 km on a single
battery charge,” The International Journal of Robotics Research,
vol. 33, no. 10, pp. 1305-1321, June 2014. [Online]. Available:
http://ijr.sagepub.com/cgi/doi/10.1177/0278364914527485

J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture
Point: A Step toward Humanoid Push Recovery,” 2006
6th IEEE-RAS International Conference on Humanoid
Robots, pp. 200-207, Dec. 2006. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4115602
T. Koolen, T. de Boer, J. Rebula, a. Goswami, and
J. Pratt, “Capturability-based analysis and control of legged
locomotion, Part 1: Theory and application to three simple
gait models,” The International Journal of Robotics Research,
vol. 31, no. 9, pp. 1094-1113, July 2012. [Online]. Available:
http://ijr.sagepub.com/cgi/doi/10.1177/0278364912452673

J. Pratt, T. Koolen, T. de Boer, J. Rebula, S. Cotton, J. Carff,
M. Johnson, and P. Neuhaus, “Capturability-based analysis and
control of legged locomotion, Part 2: Application to M2V2, a lower-
body humanoid,” The International Journal of Robotics Research,
vol. 31, no. 10, pp. 1117-1133, Aug. 2012. [Online]. Available:
http://ijr.sagepub.com/cgi/doi/10.1177/0278364912452762

J. Englsberger, C. Ott, M. A. Roa, A. Albu-sch, and G. Hirzinger,
“Bipedal walking control based on Capture Point dynamics,” in Inter-
national Conference on Intelligent Robots and Systems, San Francisco,
2011, pp. 4420-4427.

A. Ruina and A. Kuo, “Some things that we think we know about
human and robotic walking,” in Dynamic Walking Conference, 2014.
S. Kajita and K. Tan, “Study of Dynamic Biped Locomotion on
Rugged Terrain - Derivation and Application of the Linear Inverted
Pendulum Mode,” in International Conference on Robotics and Au-
tomation, no. April, 1991, pp. 1405-1411.

M. Srinivasan and A. Ruina, “Computer optimization of a
minimal biped model discovers walking and running.” Nature,
vol. 439, no. 7072, pp. 72-5, Jan. 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16155564

, “Idealized walking and running gaits minimize
work,” Proceedings of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, vol. 463, no.
2086, pp. 2429-2446, Oct. 2007. [Online]. Available:

http://rspa.royalsocietypublishing.org/content/463/2086/2429.short

M. Garcia, a. Chatterjee, a. Ruina, and M. Coleman, “The simplest
walking model: stability, complexity, and scaling.” Journal of
biomechanical engineering, vol. 120, no. 2, pp. 281-8, Apr. 1998.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10412391
A. D. Kuo, “Energetics of Actively Powered Locomotion Using the
Simplest Walking Model,” Journal of Biomechanical Engineering, vol.
124, no. 1, p. 113, 2002.

P. Zaytzev, “The viability and controllability approach to robustness in
bipedal locomotion: application to simple models,” Ph.D. dissertation,
Cornell University, 2015.

P. a. Bhounsule, J. Cortell, A. Grewal, B. Hendriksen, J. G. D.
Karssen, C. Paul, and A. Ruina, “MULTIMEDIA EXTENSION #
1 International Journal of Robotics Research Low-bandwidth reflex-
based control for lower power walking : 65 km on a single battery
charge,” International Journal of Robotics Research, 2014.
MATLAB, version 8.3.0 (r2014a). Natick, Massachusetts: The Math-
Works Inc., 2014. [Online]. Available: http://www.mathworks.com/

